9.已知平面向量$\overrightarrow a$=(0,-1),$\overrightarrow b$=(1,1),|λ$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{5}$,則λ的值為( 。
A.3B.2C.3或-1D.2或-1

分析 根據(jù)題意,由向量$\overrightarrow a$、$\overrightarrow b$的坐標(biāo)可得$λ\vec a+\vec b$的坐標(biāo),進(jìn)而由向量模的計(jì)算公式可得1+(1-λ)2=5,解得λ的值,即可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow a$=(0,-1),$\overrightarrow b$=(1,1),
則$λ\vec a+\vec b$=(1,1-λ),
又由|λ$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{5}$,即$|(1,1-λ)|=\sqrt{5}$,
有1+(1-λ)2=5,
解得λ=3或-1,
故選:C.

點(diǎn)評 本題考查向量的坐標(biāo)運(yùn)算,涉及向量模的計(jì)算,關(guān)鍵是求出$λ\vec a+\vec b$的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\left\{\begin{array}{l}{\frac{lo{g}_{2}{a}_{n}}{{n}^{2}(n+2)},n為奇數(shù)}\\{\frac{n}{{a}_{n}},n為偶數(shù)}\end{array}\right.$,Tn為{bn}的前n項(xiàng)和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a,b,c成等差數(shù)列,C=2A.
(1)求cosA;
(2)設(shè)$a=\frac{{4{m^2}+4m+9}}{m+1}$(m>0),求△ABC的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a<0,則“ax0=b”的充要條件是( 。
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}滿足an+1=an+$\frac{1}{2}$,則數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.擺動(dòng)數(shù)列D.常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=1+$\frac{{{2^{x+1}}}}{{{2^x}+1}}$+sinx在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n等于( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a>0,b>0,a+b=1.
(Ⅰ)求$y=(a+\frac{1}{a})(b+\frac{1})$的最小值.
(Ⅱ)求證:${(a+\frac{1}{a})^2}+{(b+\frac{1})^2}≥\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知方程$\frac{x^2}{4-k}+\frac{y^2}{k-2}$=1表示橢圓,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知cot(sinθ)•tan(cosθ)>0,角θ是第幾象限的角一,三.

查看答案和解析>>

同步練習(xí)冊答案