分析 (1)由函數(shù)f(x)的最小正周期求出ω的值,再由f(x)的最值求出a、b的值;
(2)根據(jù)正弦函數(shù)的圖象與性質(zhì),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$(k∈Z),即可求出f(x)的單調(diào)增區(qū)間.
解答 解:(1)由函數(shù)f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b的最小正周期為π,
得$\frac{2π}{2ω}$=π,∴ω=1,
又f(x)的最大值是$\frac{7}{4}$,最小值是$\frac{3}{4}$,
則$\left\{\begin{array}{l}{a+\frac{a}{2}+b=\frac{7}{4}}\\{-a+\frac{a}{2}+b=\frac{3}{4}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$;
(2)由(1)知,f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{5}{4}$,
當(dāng)2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$(k∈Z),
即kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$(k∈Z)時(shí),f(x)單調(diào)遞增,
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).
點(diǎn)評(píng) 本題考查了函數(shù)f(x)=Asin(ωx+φ)+b的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2,3} | B. | {1,2} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com