【題目】已知函數(shù)f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則AB=( )
A.a22a16B.a2+2a16
C.16D.16
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.已知函數(shù).
(1)討論在上的單調(diào)性;
(2)設(shè),若當(dāng),且時,,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采購經(jīng)理指數(shù)(PMⅠ)是衡量一個國家制造業(yè)的“體檢表”,是衡量制造業(yè)在生產(chǎn)、新訂單、商品價格、存貨、雇員、訂單交貨新出口訂單和進口等八個方面狀況的指數(shù),圖為2018年9月—2019年9月我國制造業(yè)的采購經(jīng)理指數(shù)(單位:%).
(1)求2019年前9個月我國制造業(yè)的采購經(jīng)理指數(shù)的平均數(shù)(精確到0.1);
(2)從2018年10月—2019年9月這12個月任意選取4個月,記采購經(jīng)理指數(shù)與上個月相比有所回升的月份個數(shù)為X,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).設(shè)與的交點為,當(dāng)變化時,的軌跡為曲線.
(1)求的普通方程;
(2)設(shè)為圓上任意一點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,將曲線繞極點逆時針旋轉(zhuǎn)后得到曲線.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若直線:與,分別相交于異于極點的,兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共l4分)
已知函數(shù)f(x)=x +, h(x)=.
(I)設(shè)函數(shù)F(x)=f(x)一h(x),求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè)a∈R,解關(guān)于x的方程log4[]=1og2h(a-x)一log2h (4-x);
(Ⅲ)試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個正三角形挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第4個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區(qū)域的細小顆粒物的數(shù)量約是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線.直線(為參數(shù)),點的坐標(biāo)為.
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)若直線與曲線相交于、兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com