如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.
(I)求二面角B-AF-D的大;
(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.
(1)
(2)
解析試題分析:解:(I)(綜合法)連接AC、BD交于菱形的中心O,過O作OGAF,
G為垂足。連接BG、DG。由BDAC,BDCF得BD平面ACF,故BDAF。
于是AF平面BGD,所以BGAF,DGAF,BGD為二面角B-AF-D 的平面角。
由, ,得,
由,得
(向量法)以A為坐標原點,、、方向分別為x軸、y軸、z軸的正方向建立空間直角坐標系(如圖)
設平面ABF的法向量,則由得
令,得,
同理,可求得平面ADF的法向量。
由知,平面ABF與平面ADF垂直,
二面角B-AF-D的大小等于。
(II)連EB、EC、ED,設直線AF與直線CE相交于點H,則四棱錐E-ABCD與四棱錐F-ABCD的公共部分為四棱錐H-ABCD。
過H作HP⊥平面ABCD,P為垂足。
因為EA⊥平面ABCD,F(xiàn)C⊥平面ABCD,,所以平面ACFE⊥平面ABCD,從而
由得。
又因為
故四棱錐H-ABCD的體積
考點:二面角以及體積
點評:主要是考查了二面角的平面角以及體積的計算。屬于基礎題。
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知為圓的直徑,點為線段上一點,且,點為圓上一點,且.點在圓所在平面上的正投影為點,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面四邊形的4個頂點都在球的表面上,為球的直徑,為球面上一點,且平面 ,,點為的中點.
(1) 證明:平面平面;
(2) 求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com