6.設集合A={x|-1<x<3},B={x|x2+x-2>0},則A∩B=( 。
A.(2,3)B.(1,3)C.(-∞,-2)∪(1,3)D.(-∞,-2)∪(1,+∞)

分析 根據(jù)不等式的解法,求出集合的等價條件,然后進行計算即可.

解答 解:B={x|x2+x-2>0}={x|(x-1)(x+2)>0}={x|x>1或x<-2},
則A∩B={x|1<x<3}=(1,3),
故選:B

點評 本題主要考查集合的基本運算,求出集合的等價條件是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知復數(shù)z=a+bi,且|z-2|=1,則$\frac{a}$的最大值為( 。
A.3B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.每次抽獎都是從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球.在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.則顧客抽獎1次能獲獎的概率是$\frac{7}{10}$;若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,則EX=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a3+a5=21,a3=6,則a5+a7+a9=(  )
A.$\frac{21}{4}$B.$\frac{21}{2}$C.42D.84

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知橢圓$C:\frac{x^2}{2}+{y^2}=1$的右焦點為F,上頂點為A,點P是該橢圓上的動點,當△PAF的周長最大時,△PAF的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,則z=2x-y的最大值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,E、F分別是A1B,AC1的中點.
(1)求證:平面AEF⊥平面AA1B1B;
(2)若A1A=2AB=2BC=4,求三棱錐F-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點F(-c,0)(c>0),作圓x2+y2=$\frac{a^2}{4}$的切線,切點為E,延長FE交雙曲線右支于點P,若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,則雙曲線的離心率為( 。
A.$\sqrt{10}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{10}}}{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=xex+f′(0),則曲線y=f(x)在x=1處的切線方程是y=2ex-e+1.

查看答案和解析>>

同步練習冊答案