17.商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.每次抽獎都是從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球.在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.則顧客抽獎1次能獲獎的概率是$\frac{7}{10}$;若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,則EX=$\frac{3}{5}$.

分析 利用相互獨立事件的概率乘法公式計算不獲獎的概率得出獲獎的概率,根據(jù)二項分布的性質得出數(shù)學期望.

解答 解:抽獎1次,不中獎的概率為$\frac{6}{10}×\frac{5}{10}$=$\frac{3}{10}$,
∴抽獎1次能獲獎的概率為1-$\frac{3}{10}$=$\frac{7}{10}$;
抽獎1次獲一等獎的概率為$\frac{4}{10}×\frac{5}{10}$=$\frac{1}{5}$,
∴隨機變量X服從二項分布,即X~B(3,$\frac{1}{5}$),
∴EX=3×$\frac{1}{5}$=$\frac{3}{5}$.
故答案為:$\frac{7}{10}$,$\frac{3}{5}$.

點評 本題考查了相互獨立事件的概率的計算,數(shù)學期望的計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.任取實數(shù)x,y∈[0,1],則滿足$\frac{1}{2}x≤y≤\sqrt{x}$的概率為( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{5}{6}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若函數(shù)y=ksin(kx+φ)($k>0,|φ|<\frac{π}{2}$)與函數(shù)y=kx-k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx-φ)+cos(kx-φ)圖象的一條對稱軸的方程可以為(  )
A.$x=-\frac{π}{24}$B.$x=\frac{13π}{24}$C.$x=\frac{7π}{24}$D.$x=-\frac{13π}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,在底面ABCD中,AD∥BC,AD⊥CD,Q是AD的中點,M是棱PC的中點,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$,PB=$\sqrt{6}$.
(1)求證:平面PAD⊥底面ABCD
(2)試求三棱錐B-PQM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|2x-1|+|x+1|.
(1)在給出的直角坐標系中作出函數(shù)y=f(x)的圖象,并從圖中找出滿足不等式f(x)≤3的解集;
(2)若函數(shù)y=f(x)的最小值記為m,設a,b∈R,且有a2+b2=m,試證明:$\frac{1}{{{a^2}+1}}+\frac{4}{{{b^2}+1}}≥\frac{18}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某四面體的三視圖如圖所示,其中側視圖與俯視圖都是腰長為2的等腰直角三角形,正視圖是邊長為2的正方形,則此四面體的體積為$\frac{4}{3}$,表面積為2+2$\sqrt{3}+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F(xiàn)為棱AE的中點.
(1)求證:直線AB⊥平面CDF;
(2)若異面直線BE與AD所成角為450,求二面角B-CF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設集合A={x|-1<x<3},B={x|x2+x-2>0},則A∩B=(  )
A.(2,3)B.(1,3)C.(-∞,-2)∪(1,3)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若直線(a+1)x-y+1-2a=0與(a2-1)x+(a-1)y-15=0平行,則實數(shù)a的值等于( 。
A.1或-1B.1C.-1D.不存在

查看答案和解析>>

同步練習冊答案