15.已知F是拋物線y2=2x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=11,則線段AB的中點到y(tǒng)軸的距離為( 。
A.3B.4C.5D.7

分析 求得拋物線的焦點坐標,根據(jù)拋物線的焦點弦公式,求得x1+x2=10,則線段AB的中點橫坐標為$\frac{{x}_{1}+{x}_{2}}{2}$,即可求得線段AB的中點到y(tǒng)軸的距離.

解答 解:∵F是拋物線y2=2x的焦點F($\frac{1}{2}$,0),準線方程x=-$\frac{1}{2}$,
設(shè)A(x1,y1),B(x2,y2
∴|AF|+|BF|=x1+$\frac{1}{2}$+x2+$\frac{1}{2}$=11
∴x1+x2=10,
∴線段AB的中點橫坐標為$\frac{{x}_{1}+{x}_{2}}{2}$=5,
∴線段AB的中點到y(tǒng)軸的距離為5,
故選:C.

點評 本題考查解決拋物線上的點到焦點的距離問題,利用拋物線的定義將到焦點的距離轉(zhuǎn)化為到準線的距離是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線a、b和平面α、β,下列命題中假命題的是①②③④(只填序號).
①若a∥b,則a平行于經(jīng)過b的任何平面;
②若a∥α,b∥α,則a∥b;
③若a∥α,b∥β,且α⊥β,則a⊥b;
④若α∩β=a,且b∥α,則b∥a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.德國數(shù)學(xué)家萊布尼茲發(fā)現(xiàn)了右面的單位分數(shù)三角形,單位分數(shù)是分子為1,分母為正整數(shù)的分數(shù)稱為萊布尼茲三角形:根據(jù)前6行的規(guī)律,寫出第7行的第3個數(shù)是$\frac{1}{105}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)為偶函數(shù),g(x)=f(x)+x3,且g(2)=10,則g(-2)=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}(a>1),g(x)={3^x}$.
(1)若g(a+2)=81,求實數(shù)a的值,并判斷函數(shù)f(x)的奇偶性;
(2)用定義證明f(x)在R上的增函數(shù);
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overline{z}$為復(fù)數(shù)z的共軛復(fù)數(shù),且(1-i)z=1+i,則$\overline{z}$為(  )
A.-iB.iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(1-x)(2x+1)4的展開式中,x3的系數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知λ∈R,向量$\overrightarrow{a}$=( 3,λ ),$\overrightarrow$=(λ-1,2),則“λ=$\frac{3}{5}$”是“$\overrightarrow{a}$⊥$\overrightarrow$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=2|sinx|的最小正周期為( 。
A.B.$\frac{3π}{2}$C.πD.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案