精英家教網 > 高中數學 > 題目詳情
10.燕子每年秋天都要從北方到南方過冬,鳥類科學家發(fā)現,兩歲燕子的飛行速度v與耗氧量x之間滿足函數關系v=alog2$\frac{x}{10}$.若兩歲燕子耗氧量達到40個單位時,其飛行速度為v=10m/s,則兩歲燕子飛行速度為25m/s時,耗氧量達到320單位.

分析 由題意,令x=4,y=10代入解析式得到a;求得解析式,然后將v=25代入解析式求x

解答 解:由題意,令x=40,v=10    
 10=alog24;所以a=5;
v=25 m/s,25=5 log${\;}_{2}\frac{x}{10}$,得到x=320單位.
故答案為:320.

點評 本題主要考查對數函數的圖象和性質的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.已知ab>0,且a+4b=1,則$\frac{1}{a}+\frac{1}$的最小值為9.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.下列函數中,在(0,+∞)上單調遞減的是( 。
A.y=|x-1|B.y=log2xC.y=(x+1)2D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,在平面直角坐標系xOy中,以O為角的頂點,x軸正半軸為始邊的角α、β的終邊分別與單位圓交于點A,B,若點A的橫坐標是$\frac{4}{5}$,點B的縱坐標是$\frac{\sqrt{3}}{2}$.
(1)求cos(α-β)的值;
(2)求$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.如果函數f(x)=3sin(2x+φ)的圖象關于點($\frac{π}{3}$,0)成中心對稱(|φ|<$\frac{π}{2}$),那么函數f(x)圖象的一條對稱軸是(  )
A.x=-$\frac{π}{6}$B.x=$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的公共頂點,P,Q分別為雙曲線和橢圓上不同于A,B的動點,且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),設AP,BP,AQ,BQ的斜率分別為k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求證:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)設F2′,F2分別為雙曲線和橢圓的右焦點,且PF2′∥QF2,試判斷k12+k22+k32+k42是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.如圖所示的多面體中,已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,AD⊥DC,AB∥DC,AB=AD=DE=4,CD=8.
(1)證明:BD⊥平面BCF;
(2)設二面角E-BC-F的平面角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(3,x),若$\overrightarrow{a}$∥$\overrightarrow$,則向量$\overrightarrow{a}$在向量$\overrightarrow{c}$方向上的投影為4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.記Sn為數列{an}的前項n和,已知an>0,${a_n}^2-2{S_n}=2-{a_n}$(n∈N*
(Ⅰ)求數列{an}的通項公式.
(Ⅱ)設${b_n}=\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求數列{bn}的前項n和Tn

查看答案和解析>>

同步練習冊答案