3.已知:an=log(n+1)(n+2)(n∈Z*),若稱使乘積a1•a2•a3…an為整數(shù)的數(shù)n為劣數(shù),則在區(qū)間(1,20016)內(nèi)所有的劣數(shù)的和2026.

分析 由題意,及對數(shù)的換底公式知,a1•a2•a3…an=log2(n+2),由此知,劣數(shù)+2必為2的整數(shù)次冪,由此易得出劣數(shù)表達(dá)式,此區(qū)間(1,2016)內(nèi)所有劣數(shù)的和是一個數(shù)列求和問題,由此計算出值選出正確答案

解答 解:由題意an=log(n+1)(n+2),(n∈N*),若稱使乘積a1•a2•a3…an為整數(shù)的數(shù)n為劣數(shù)且a1•a2•a3…an=log2(n+2)
故劣數(shù)n=2k-2,故最小的劣數(shù)為2=22-2,令n=2k-2<2016,
由于210-2=1022,211-2=2046
故最大的劣數(shù)為210-2
∴(1,2010)內(nèi)所有劣數(shù)的和為22-2+23-2+24-2+…+210-2=$\frac{{2}^{2}×(1-{2}^{9})}{1-2}$-18=211-22=2026
故答案為:2026

點(diǎn)評 本題考查數(shù)列的求和,正確理解劣數(shù)定義,找出區(qū)間(1,2016)內(nèi)所有劣數(shù),以及熟練掌握數(shù)列求和的技巧分組求和是求解本題的關(guān)鍵,本題中難點(diǎn)是理解劣數(shù)的定義,由此定義得出劣數(shù)的結(jié)構(gòu),將求和的問題轉(zhuǎn)化為數(shù)列求和的問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于兩平面垂直有下列命題,其中錯誤的是( 。
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α與平面β不垂直也不重合,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線不垂直于平面β
D.如果平面α⊥平面β,那么平面α內(nèi)的所有直線都垂直于平面β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.(ax+$\sqrt{x}}$)3的展開式中x3項的系數(shù)為20,則實數(shù)a=$\root{3}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“若a>1且b>1,則a+b>2且ab>1”的逆否命題是( 。
A.若a+b≤2且ab≤1,則a≤1且b≤1B.若a+b≤2且ab≤1,則a≤1或b≤1
C.若a+b≤2或ab≤1,則a≤1且b≤1D.若a+b≤2或ab≤1,則a≤1或b≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A=B=R,x∈A,y∈B,f:x→y=ax+b是從A到B的映射,若3→1和10→8,則5在f下對應(yīng)的是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若復(fù)數(shù)Z滿足Z=i(2+Z)(i為虛數(shù)單位),則Z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}滿足a1=2016,a2=1,an+1=an+an+2,則前2017項和S2017=( 。
A.2016B.1C.0D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若圓x2+y2=m的半徑為$\sqrt{2}$,則m為( 。
A.0或2B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.半徑為6的圓與x軸相切,且與圓x2+y2-6y+8=0內(nèi)切,則此圓的方程是( 。
A.(x-4)2+(y-6)2=6B.(x±4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x±4)2+(y-6)2=36

查看答案和解析>>

同步練習(xí)冊答案