14.不等式22x-1<2的解集是( 。
A.{x|x<0}B.{x|x>1}C.{x|x<2}D.{x|x<1}

分析 根據(jù)指數(shù)函數(shù)的單調(diào)性,把不等式22x-1<2化為2x-1<1,求出解集即可.

解答 解:不等式22x-1<2可化為2x-1<1,
解得x<1,
所以不等式22x-1<2的解集是{x|x<1}.
故選:D.

點(diǎn)評(píng) 本題考查了利用指數(shù)函數(shù)的單調(diào)性求不等式解集的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓的方程為$\frac{{x}^{2}}{9}$+y2=1,過(guò)左焦點(diǎn)作傾斜角為$\frac{π}{6}$的直線(xiàn)交橢圓于A,B兩點(diǎn).
(1)求弦AB的長(zhǎng).
(2)求左焦點(diǎn)F1到AB中點(diǎn)M的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)F1,F(xiàn)2分別為橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左右焦點(diǎn),點(diǎn)P(x,y)在直線(xiàn)y-x-3=0上(x≠-3且$x≠±\sqrt{3}$),直線(xiàn)PF1,PF2的斜率分別為k1、k2,則$\frac{1}{k_2}-\frac{2}{k_1}$的值為( 。
A.1B.$\frac{3}{2}$C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}a{x^2}$-bx.
(1)當(dāng)a=-2,b=3時(shí),求函數(shù)f(x)的極值;
(2)令F(x)=f(x)+$\frac{1}{2}a{x^2}+bx+\frac{a}{x}({0<x≤3})$,其圖象上任意一點(diǎn)P(x0,y0)處切線(xiàn)的斜率k≤$\frac{1}{2}$恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0,b=-1時(shí),方程f(x)=mx在區(qū)間[1,e2]內(nèi)恰有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知橢圓$\frac{x^2}{5}$+$\frac{y^2}{m}$=1的離心率e=$\frac{{\sqrt{10}}}{5}$,則m的值為( 。
A.3B.$\frac{25}{3}$或 3C.$\sqrt{5}$D.$\frac{{5\sqrt{15}}}{3}$或$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,滿(mǎn)足“f(x)在x∈(0,+∞)為增”的是( 。
A.f(x)=x2+4x+3B.f(x)=-3x+1C.f(x)=$\frac{2}{x}$D.f(x)=x2-4x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為A1B1,BB1,B1C1的中點(diǎn),則AC1
與D1E所成角的余弦值為$\frac{\sqrt{15}}{30}$,AC1與平面EFG所成角的正弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)$y=\sqrt{1-{2^x}}$的定義域是( 。
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,在R上單調(diào)遞增的是( 。
A.y=-xB.y=log3xC.$y={x^{\frac{1}{3}}}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

同步練習(xí)冊(cè)答案