7.中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個(gè)三角形,邊長分別為a,b,c,三角形的面積S可由公式$S=\sqrt{p(p-a)(p-b)(p-c)}$求得,其中p為三角形周長的一半,這個(gè)公式也被稱為海倫-秦九韶公式,現(xiàn)有一個(gè)三角形的邊長滿足a+b=12,c=8,則此三角形面積的最大值為(  )
A.$4\sqrt{5}$B.$8\sqrt{5}$C.$4\sqrt{15}$D.$8\sqrt{15}$

分析 由題意,p=10,S=$\sqrt{10(10-a)(10-b)(10-c)}$=$\sqrt{20(10-a)(10-b)}$,利用基本不等式,即可得出結(jié)論.

解答 解:由題意,p=10,S=$\sqrt{10(10-a)(10-b)(10-c)}$=$\sqrt{20(10-a)(10-b)}$≤$\sqrt{20}$$•\frac{10-a+10-b}{2}$=8$\sqrt{5}$,
∴此三角形面積的最大值為8$\sqrt{5}$.
故選B.

點(diǎn)評 本題考查面積的計(jì)算,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過直線y=x+1上的點(diǎn)P作圓C:(x-1)2+(y-6)2=2的兩條切線l1,l2,當(dāng)直線l1,l2關(guān)于直線y=x+1對稱時(shí),|PC|=(  )
A.3B.2$\sqrt{2}$C.1+$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=ex(x-b)(b∈R).若存在$x∈[{\frac{1}{2},2}]$,使得f(x)+xf'(x)>0,則實(shí)數(shù)b的取值范圍是(-∞,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=lnx+a(1-x),當(dāng)f(x)有最大值,且最大值大于2a-2時(shí),則a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是由圓柱與兩個(gè)半球組合而成的幾何體的三視圖,則該幾何體的體積與表面積分別為(  )
A.$\frac{10}{3}π,8π$B.$\frac{16}{3}π,8π$C.$\frac{10}{3}π,10π$D.$\frac{16}{3}π,10π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在三棱柱ABC-A1B1C1中,已知側(cè)棱CC1⊥底面ABC,M為BC的中點(diǎn),$AC=AB=3,BC=2,C{C_1}=\sqrt{2}$.
(1)證明:B1C⊥平面AMC1
(2)求點(diǎn)A1到平面AMC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的各項(xiàng)均為非負(fù)數(shù),其前n項(xiàng)和為Sn,且對任意的n∈N*,都有${a_{n+1}}≤\frac{{{a_n}+{a_{n+2}}}}{2}$.
(1)若a1=1,a505=2017,求a6的最大值;
(2)若對任意n∈N*,都有Sn≤1,求證:$0≤{a_n}-{a_{n+1}}≤\frac{2}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,則z=x+2y的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),O是坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2分別為其左右焦點(diǎn),|F1F2|=2$\sqrt{3}$,M是橢圓上一點(diǎn),∠F1MF2的最大值為$\frac{2}{3}$π
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C交于P,Q兩點(diǎn),且OP⊥OQ
(i)求證:$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}$為定值;
(ii)求△OPQ面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案