9.已知向量$\overrightarrow m=(1,2)$,$\overrightarrow n=(2,3)$,則$\overrightarrow m$在$\overrightarrow n$方向上的投影為( 。
A.$\sqrt{13}$B.8C.$\frac{{8\sqrt{5}}}{5}$D.$\frac{{8\sqrt{13}}}{13}$

分析 $\overrightarrow m$在$\overrightarrow n$方向上的投影為$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{n}|}$,代值計(jì)算即可.

解答 解:$\overrightarrow m=(1,2)$,$\overrightarrow n=(2,3)$,則$\overrightarrow m$•$\overrightarrow n$=1×2+2×3=8,
|$\overrightarrow{n}$|=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
則$\overrightarrow m$在$\overrightarrow n$方向上的投影為$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{n}|}$=$\frac{8}{\sqrt{13}}$=$\frac{8\sqrt{13}}{13}$,
故選:D.

點(diǎn)評 本題考查了向量的投影的定義,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{z}{2-3i}$對應(yīng)于復(fù)平面內(nèi)一點(diǎn)(0,1),則|z|=( 。
A.$\sqrt{13}$B.4C.5D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=ax3+bx,若f(a)=8,則f(-a)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若不等式組滿足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$,則z=2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P在雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$上,點(diǎn)A滿足$\overrightarrow{PA}=(t-1)\overrightarrow{OP}$(t∈R),且$\overrightarrow{OA}•\overrightarrow{OP}=64$,$\overrightarrow{OB}=(0,1)$,則$|{\overrightarrow{OB}•\overrightarrow{OA}}|$的最大值為(  )
A.$\frac{5}{4}$B.$\frac{24}{5}$C.$\frac{4}{5}$D.$\frac{5}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在等差數(shù)列{an}中,公差d≠0,a1=1,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{a_n}{3^n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面中,復(fù)數(shù)$\frac{1}{{{{({1+i})}^2}+1}}+i$對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過動點(diǎn)P作圓:(x-3)2+(y-4)2=1的切線PQ,其中Q為切點(diǎn),若|PQ|=|PO|(O為坐標(biāo)原點(diǎn)),則|PQ|的最小值是$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某四棱錐的三視圖如圖所示(單位:cm),則該幾何體的體積是12cm3,側(cè)面積是27cm2

查看答案和解析>>

同步練習(xí)冊答案