A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 2 | D. | $\sqrt{3}$ |
分析 由右焦點(diǎn)為F(c,0),離心率為$\frac{{\sqrt{3}}}{3}$,求出a,b,c的關(guān)系.利用F(c,0)設(shè)直線與圓的相交的弦長公式,建立關(guān)系即可得到答案.
解答 解:由左焦點(diǎn)為F(c,0),離心率為$\frac{{\sqrt{3}}}{3}$,可得:c=$\frac{\sqrt{3}}{3}a$,$^{2}=\frac{2}{3}{a}^{2}$
設(shè)直線方程為y=k(x-c)與圓相交:
聯(lián)立:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=\frac{^{2}}{4}}\\{y=kx-kc}\end{array}\right.$,整理:$(1+{k}^{2}){x}^{2}-2{k}^{2}cx+{k}^{2}{c}^{2}-\frac{^{2}}{4}=0$
那么:${x}_{1}+{x}_{2}=\frac{2{k}^{2}c}{1+{k}^{2}}$,${x}_{1}•{x}_{2}=\frac{{k}^{2}{c}^{2}-\frac{^{2}}{4}}{1+{k}^{2}}$,
由弦長公式可得:c=$\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
化簡:c2=$\frac{4{k}^{4}{c}^{2}-4{k}^{2}{c}^{2}-^{2}}{1+{k}^{2}}$.
由c=$\frac{\sqrt{3}}{3}a$,$^{2}=\frac{2}{3}{a}^{2}$.
解得:k=$\frac{\sqrt{3}}{3}$
故選:A.
點(diǎn)評 本題考查了橢圓的基本性質(zhì)abc的關(guān)系,直線與圓的弦長公式以及化簡能力.屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
t(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{24}{25}$ | B. | $-\frac{12}{25}$ | C. | $-\frac{4}{5}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 28 | B. | 32 | C. | 20 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com