分析 (1)分類討論:n=1時,a1=S1;n≥2時,an=Sn-Sn-1;
(2)利用裂項相消法求和,然后根據(jù)t≤4Tn恒成立來求t的最大值.
解答 解:∵數(shù)列{an}的前n項和,${S_n}=\frac{{3{n^2}-n}}{2}$,
∴a1=S1=1,
n≥2時,Sn-Sn-1=$\frac{3{n}^{2}-n}{2}$-$\frac{3(n-1)^{2}-(n-1)}{2}$=3n-2,
n=1時,上式成立,
∴an=3n-2.
(2)由an=3n-2,可得${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({3n-2})({3n+1})}}=\frac{1}{3}({\frac{1}{3n-2}-\frac{1}{3n+1}}),{T_n}={b_1}+{b_2}+…+{b_n}$=$\frac{1}{3}[{({1-\frac{1}{4}})+({\frac{1}{4}-\frac{1}{7}})+…+({\frac{1}{3n-2}-\frac{1}{3n+1}})}]=\frac{n}{3n+1}$.
因為${T_{n+1}}-{T_n}=\frac{n+1}{{3({n+1})+1}}-\frac{n}{3n+1}=\frac{1}{{({3n+1})({3n+4})}}>0$,
所以Tn+1>Tn,所以數(shù)列{Tn}是遞增數(shù)列.
所以$t≤4{T_n}?\frac{t}{4}≤{T_n}?\frac{t}{4}≤{T_1}=\frac{1}{4}?t≤1$,
所以實數(shù)t的最大值是1.
點評 本題主要考查了利用數(shù)列的遞推公式構造等差數(shù)列求數(shù)列的通項公式,及數(shù)列的裂項求和方法的應用及恒成立與最值求解的應用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | $2\sqrt{6}$ | C. | $4\sqrt{3}$ | D. | $2\sqrt{14}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com