【題目】已知函數(shù).
(1)若,求函數(shù)的極值,并指出是極大值還是極小值;
(2)若,求證:在區(qū)間上,函數(shù)的圖像在函數(shù)的圖像的下方.
【答案】(1)答案見解析;(2)證明見解析.
【解析】試題分析:(1)定義域?yàn)?/span>(0,+∞),f′(x) ,可求得單調(diào)區(qū)間有望極小值。(2)函數(shù)的圖像在函數(shù)的圖像的下方,即f(x)<g(x),變形F(x)=f(x)-g(x)=x2+lnx-x3<0,由導(dǎo)數(shù)求。
試題解析:(1)解由于函數(shù)f(x)的定義域?yàn)?/span>(0,+∞),
當(dāng)a=-1時(shí),f′(x)=x-
令f′(x)=0得x=1或x=-1(舍去),
當(dāng)x∈(0,1)時(shí),f′(x)<0,因此函數(shù)f(x)在(0,1)上是單調(diào)遞減的,
當(dāng)x∈(1,+∞)時(shí),f′(x)>0,因此函數(shù)f(x)在(1,+∞)上是單調(diào)遞增的,
則x=1是f(x)極小值點(diǎn),
所以f(x)在x=1處取得極小值為f(1)=
(2)證明:設(shè)F(x)=f(x)-g(x)=x2+lnx-x3,
則F′(x)=x+-2x2=,
當(dāng)x>1時(shí),F′(x)<0,
故f(x)在區(qū)間[1,+∞)上是單調(diào)遞減的,
又F(1)=-<0,
∴在區(qū)間[1,+∞)上,F(x)<0恒成立.即f(x)—g(x)<0恒成立
即f(x)<g(x)恒成立.
因此,當(dāng)a=1時(shí),在區(qū)間[1,+∞)上,函數(shù)f(x)的圖像在函數(shù)g(x)圖像的下方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上,滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線過點(diǎn),且與橢圓只有一個(gè)公共點(diǎn),直線與的傾斜角互補(bǔ),且與橢圓交于異于點(diǎn)的兩點(diǎn),,與直線交于點(diǎn)(介于,兩點(diǎn)之間).
(i)求證:;
(ii)是否存在直線,使得直線、、、的斜率按某種順序能構(gòu)成等比數(shù)列?若能,求出的方程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若acos2ccos2b,那么a,b,c的關(guān)系是( )
A.a+b=cB.a+c=2bC.b+c=2aD.a=b=c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“砥礪奮進(jìn)的五年”,泉州市經(jīng)濟(jì)社會(huì)發(fā)展取得新成就.自2012年以來,泉州市城鄉(xiāng)居民收入穩(wěn)步增長(zhǎng).隨著擴(kuò)大內(nèi)需,促進(jìn)消費(fèi)等政策的出臺(tái),居民消費(fèi)支出全面增長(zhǎng),消費(fèi)結(jié)構(gòu)持續(xù)優(yōu)化升級(jí),城鄉(xiāng)居民人均可支配收入快速增長(zhǎng),人民生活品質(zhì)不斷提升.下圖是泉州市2012-2016年城鄉(xiāng)居民人均可支配收入實(shí)際增速趨勢(shì)圖(例如2012年,泉州城鎮(zhèn)居民收入實(shí)際增速為7.3%,農(nóng)村居民收入實(shí)際增速為8.2%).
(1)從2012-2016五年中任選一年,求城鎮(zhèn)居民收入實(shí)際增速大于7%的概率;
(2)從2012-2016五年中任選二年,求至少有一年農(nóng)村和城鎮(zhèn)居民收入實(shí)際增速均超過7%的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)任意的正整數(shù)n,都有成立,記(),
(1)求數(shù)列的通項(xiàng)公式;
(2)記(),設(shè)數(shù)列的前n和為,求證:對(duì)任意正整數(shù)n,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動(dòng)”是一個(gè)類似計(jì)步數(shù)據(jù)庫的公眾帳號(hào),用戶只需以運(yùn)動(dòng)手環(huán)或手機(jī)協(xié)處理器的運(yùn)動(dòng)教據(jù)為介,然后關(guān)注該公眾號(hào),就能看見自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn),現(xiàn)隨機(jī)選取朋友圈中的50人記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
規(guī)定:人一天行走的步數(shù)超過8000步時(shí)被系統(tǒng)評(píng)定為“積極性”,否則為“懈怠性”.
(1)填寫下面列聯(lián)表(單位:人),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“評(píng)定類型與性別有關(guān)”;
附:
(2)為了進(jìn)一步了解“懈怠性”人群中每個(gè)人的生活習(xí)慣,從步行在的人群中再隨機(jī)抽取3人,求選中的人中男性人數(shù)超過女性人數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)50名學(xué)生參加數(shù)學(xué)競(jìng)賽,根據(jù)他們的成績(jī)繪制了如圖所示的頻率分布直方圖,已知分?jǐn)?shù)在的矩形面積為,
求:分?jǐn)?shù)在的學(xué)生人數(shù);
這50名學(xué)生成績(jī)的中位數(shù)精確到;
若分?jǐn)?shù)高于60分就能進(jìn)入復(fù)賽,從不能進(jìn)入復(fù)賽的學(xué)生中隨機(jī)抽取兩名,求兩人來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:,直線l:.
若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)時(shí),求實(shí)數(shù)k的值;
若,P是直線上的動(dòng)點(diǎn),過P作圓O的兩條切線PC、PD,切點(diǎn)分別為C、D,試探究:直線CD是否過定點(diǎn)若存在,請(qǐng)求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com