14.已知O為坐標(biāo)原點(diǎn),F(xiàn)是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),A,B分別為左、右頂點(diǎn),過點(diǎn)F做x軸的垂線交雙曲線于點(diǎn)P,Q,連接PB交y軸于點(diǎn)E,連結(jié)AE交QF于點(diǎn)M,若M是線段QF的中點(diǎn),則雙曲線C的離心率為(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

分析 利用已知條件求出P的坐標(biāo),然后求解E的坐標(biāo),推出M的坐標(biāo),利用中點(diǎn)坐標(biāo)公式得到雙曲線的離心率即可.

解答 解:由題意可得P(-c,$\frac{^{2}}{a}$),B(a,0),可得BP的方程為:y=-$\frac{^{2}}{a(a+c)}$(x-a),
x=0時(shí),y=$\frac{^{2}}{a+c}$,E(0,$\frac{^{2}}{a+c}$),A(-a,0),
則AE的方程為:y=$\frac{^{2}}{a(a+c)}$(x+a),則M(-c,-$\frac{^{2}(c-a)}{a(a+c)}$),
M是線段QF的中點(diǎn),
可得:2$\frac{^{2}(c-a)}{a(a+c)}$=$\frac{^{2}}{a}$,
即2c-2a=a+c,
可得e=3.
故選:C.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若sin(α-$\frac{π}{6}$)=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),則cosα的值為$\frac{4\sqrt{3}-3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,則輸出的S值為(  )
A.1B.3C.7D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若非零向量$\overrightarrow{a}$,b滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥(3$\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角余弦值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.《九章算術(shù)》是我國古代數(shù)學(xué)經(jīng)典名著,它在集合學(xué)中的研究比西方早1千年,在《九章算術(shù)》中,將四個(gè)面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為( 。
A.200πB.50πC.100πD.$\frac{125\sqrt{2}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等比數(shù)列{an}中,a2=2,a5=$\frac{1}{4}$,則a7=(  )
A.$\frac{1}{64}$B.$\frac{1}{32}$C.$\frac{1}{16}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin($ωx+ϕ),(ω>0,A>0,ϕ∈(0,\frac{π}{2}))$部分圖象如圖所示.
(I)求函數(shù)f(x)的解析式; 
(II)已知$a∈(0,\frac{π}{2})$,且cosa=$\frac{2}{3}$,求f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\vec a$與$\vec b$的夾角為$\frac{2π}{3}$,且$|\vec a|=2$,$|\vec b|=5$,則$(2\vec a-\vec b)•\vec a$=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在某校,一學(xué)科的學(xué)習(xí)由必修、選修兩門課程組成,對某層次學(xué)生調(diào)查統(tǒng)計(jì)知,有且僅有一門課程獲得學(xué)分概率為$\frac{5}{12}$,至少一門課程獲得學(xué)分的概率為$\frac{11}{12}$.規(guī)定兩門課程都獲得學(xué)分該學(xué)科才能結(jié)業(yè).已知必修課程獲得學(xué)分的概率大于選修課程獲得學(xué)分的概率且互不影響.
(1)對該層內(nèi)的A同學(xué),該學(xué)科能結(jié)業(yè)的概率是多少?
(2)在該層次的同學(xué)中隨機(jī)抽取5名,記X為其中能結(jié)業(yè)的學(xué)生數(shù),求X的期望EX與方差DX.

查看答案和解析>>

同步練習(xí)冊答案