3.已知$\vec a$與$\vec b$的夾角為$\frac{2π}{3}$,且$|\vec a|=2$,$|\vec b|=5$,則$(2\vec a-\vec b)•\vec a$=13.

分析 利用平面向量的數(shù)量積定義計算$\overrightarrow{a}•\overrightarrow$,${\overrightarrow{a}}^{2}$,將$(2\vec a-\vec b)•\vec a$展開即可得出答案.

解答 解:$\overrightarrow{a}•\overrightarrow$=2×5×cos$\frac{2π}{3}$=-5,${\overrightarrow{a}}^{2}$=4,
∴$(2\vec a-\vec b)•\vec a$=2${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow$=8+5=13.
故答案為:13.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的奇函數(shù)f(x)滿足:f(x+1)=f(x-1),且當(dāng)-1<x<0時,f(x)=2x-1,則f(log220)等于( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知O為坐標(biāo)原點,F(xiàn)是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,A,B分別為左、右頂點,過點F做x軸的垂線交雙曲線于點P,Q,連接PB交y軸于點E,連結(jié)AE交QF于點M,若M是線段QF的中點,則雙曲線C的離心率為( 。
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.(理)設(shè)θ為直線$x-\sqrt{3}y-1=0$的傾斜角,則$sin(θ+\frac{π}{4})$=( 。
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}+1}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合$M=\{x|\frac{2x-1}{x+1}≤1\}$,N={x|-1<x<1},則( 。
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.運行如圖所示的程序框圖,輸出的n等于( 。
A.30零B.29C.28D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=sin($\frac{π}{3}$-2x)-$\sqrt{3}$sin($\frac{π}{6}$+2x),x∈R,則f(x)是(  )
A.最小正周期為π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的奇函數(shù)D.最小正周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標(biāo)準(zhǔn)為:85分及以上,記為A等;分?jǐn)?shù)在[70,85)內(nèi),記為B等;分?jǐn)?shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時認(rèn)定A,B,C為合格,D為不合格.已知甲,乙兩所學(xué)校學(xué)生的原始成績均分布在[50,100]內(nèi),為了比較兩校學(xué)生的成績,分別抽取50名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級為C,D的所有數(shù)據(jù)的莖葉圖如圖2所示.
(I)求圖中x的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;
(Ⅱ)在乙校的樣本中,從成績等級為C,D的學(xué)生中隨機抽取兩名學(xué)生進(jìn)行調(diào)研,求抽出的兩名學(xué)生中至少有一名學(xué)生成績等級為D的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,A1,B1分別是邊BA,CB的中點,A2,B2分別是線段A1A,B1B的中點,…,An,Bn分別是線段${A_{n-1}}A,{B_{n-1}}B(n∈{N^*},n>1)$的中點,設(shè)數(shù)列{an},{bn}滿足:向量$\overrightarrow{{B_n}{A_n}}={a_n}\overrightarrow{CA}+{b_n}\overrightarrow{CB}(n∈{N^*})$,有下列四個命題,其中假命題是( 。
A.數(shù)列{an}是單調(diào)遞增數(shù)列,數(shù)列{bn}是單調(diào)遞減數(shù)列
B.數(shù)列{an+bn}是等比數(shù)列
C.數(shù)列$\{\frac{a_n}{b_n}\}$有最小值,無最大值
D.若△ABC中,C=90°,CA=CB,則$|\overrightarrow{{B_n}{A_n}}|$最小時,${a_n}+{b_n}=\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案