分析 (1)由0<x<$\frac{3}{2}$,可得2-x>0,可得函數(shù)y=x(2-x)≤$(\frac{x+2-x}{2})^{2}$,即可得出.
(2)由x>3,可得x-3>0.可得y=x+$\frac{4}{x-3}$=x-3+$\frac{4}{x-3}$+3,利用基本不等式的性質(zhì)即可得出.
解答 解:(1)∵0<x<$\frac{3}{2}$,∴2-x>0,
∴函數(shù)y=x(2-x)≤$(\frac{x+2-x}{2})^{2}$=1,當且僅當x=1時取等號.
當且僅當x=2-x時取等號,既x=1時,y的最大值為1,
(2)∵x>3,∴x-3>0.
∴y=x+$\frac{4}{x-3}$=x-3+$\frac{4}{x-3}$+3≥2$\sqrt{(x-3)•\frac{4}{x-3}}$+3=7.當且僅當x=5時取等號.
y的最小值為7.
點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4,$\frac{5π}{6}$) | B. | (4,$\frac{2π}{3}$) | C. | (4,$\frac{5π}{3}$) | D. | (4,$\frac{11π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\;,\;\frac{2π}{3}$ | B. | $2\;,\;-\frac{π}{3}$ | C. | $1\;,\;\frac{π}{12}$ | D. | $1\;,\;-\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com