18.函數(shù)$f(x)=-{log_2}({{x^2}-2ax+3})在(-∞,1)$上是增函數(shù),則a的取值范圍[1,2].

分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)以及二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:函數(shù)$f(x)=-{log_2}({{x^2}-2ax+3})在(-∞,1)$上是增函數(shù),
即函數(shù)g(x)=log2(x2-2ax+3)在(-∞,1)遞減,
故$\left\{\begin{array}{l}{a≥1}\\{1-2a+3≥0}\end{array}\right.$,解得:1≤a≤2,
故答案為:[1,2].

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì)以及對(duì)數(shù)函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,a=5,B=45°,C=105°,解三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在四棱錐P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G為PC的中點(diǎn),PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F(xiàn),M分別為BC,EG上一點(diǎn),且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)過(guò)點(diǎn)E作平面PCD的垂線,垂足為H,求四棱錐H-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算:$\sqrt{2}-1≈0.414,\sqrt{3}-\sqrt{2}$≈0.318;∴$\sqrt{2}-1>\sqrt{3}-\sqrt{2}$;又計(jì)算:$\sqrt{5}-2≈0.236,\sqrt{6}-\sqrt{5}≈0.213,\sqrt{7}-\sqrt{6}$≈0.196,∴$\sqrt{5}-2>\sqrt{6}-\sqrt{5}$,$\sqrt{6}-\sqrt{5}>\sqrt{7}-\sqrt{6}$.
(1)分析以上結(jié)論,試寫(xiě)出一個(gè)一般性的命題.
(2)判斷該命題的真假,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)$f(x)=sin(2x+\frac{π}{6})$,則下列命題:
①f(x)的圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱(chēng);
②f(x)的圖象關(guān)于點(diǎn)$({\frac{π}{6},0})$對(duì)稱(chēng);
③f(x)的最小正周期為π,且在區(qū)間$[{0,\frac{π}{12}}]$上為增函數(shù);
④把f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到一個(gè)奇函數(shù)的圖象.
其中正確的命題的序號(hào)為③④.(把正確的都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.對(duì)于函數(shù)y=x+$\frac{a}{x}$(a>0,x>0),其在$(0,\sqrt{a}]$上單調(diào)遞減,在$[\sqrt{a},+∞)$上單調(diào)遞增,因?yàn)樗膱D象類(lèi)似于著名的體育用品公司耐克的商標(biāo),我們給予這個(gè)函數(shù)一個(gè)名稱(chēng)--“耐克函數(shù)”,設(shè)某“耐克函數(shù)”f(x)的解析式為f(x)=$\frac{{{x^2}+x+a}}{x}$(a>0,x>0).
(1)若a=4,求函數(shù)f(x)在區(qū)間$[\frac{1}{2},3]$上的最大值與最小值;
(2)若該函數(shù)在區(qū)間[1,2]上是單調(diào)函數(shù),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)設(shè)0<x<$\frac{3}{2}$,求函數(shù)y=x(2-x)的最大值
(2)已知x>3,求y=x+$\frac{4}{x-3}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=4cos($\frac{π}{3}$-ωx)cosωx-1(ω>0)圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知拋物線x2=4y的焦點(diǎn)為F,準(zhǔn)線為l,拋物線的對(duì)稱(chēng)軸與準(zhǔn)線交于點(diǎn)Q,P為拋物線上的動(dòng)點(diǎn),|PF|=m|PQ|,當(dāng)m最小時(shí),點(diǎn)P恰好在以F,Q為焦點(diǎn)的橢圓上,則橢圓的離心率為( 。
A.$3-2\sqrt{2}$B.$2-\sqrt{2}$C.$\sqrt{3}-\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

同步練習(xí)冊(cè)答案