11.若角α是第四象限角,則角-α的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 用不等式表示第四象限角α,再利用不等式的性質(zhì)求出-α滿足的不等式,從而確定角-α的終邊在的象限.

解答 解:∵α是第四象限角,
∴k•360°+270°<α<k•360°+360°,k∈Z,
則-k•360°-360°<-α<-k•360°-270°,k∈Z,
令n=-k,n∈Z,
故有n•360°-360°<-α<n•360°-270°,n∈Z,
則-α的終邊在第一象限.
故選:A.

點(diǎn)評(píng) 本題考查象限角的表示方法,不等式性質(zhì)的應(yīng)用,通過(guò)角滿足的不等式,判斷角的終邊所在的象限,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若實(shí)數(shù)a,b滿足$\frac{1}{a}+\frac{1}=\sqrt{ab}$,則ab的最小值為( 。
A.$\sqrt{2}$B.2C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.“-1≤m≤1”是“圓(x+m)2+y2=1與圓(x-2)2+y2=4有公共點(diǎn)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系xOy 中,橢圓G的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(-1,0),離心率e=$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓G 的標(biāo)準(zhǔn)方程;
(2)已知直線l1:y=kx+m1與橢圓G交于 A,B兩點(diǎn),直線l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點(diǎn),且|AB|=|CD|,如圖所示.
①證明:m1+m2=0;
②求四邊形ABCD 的面積S 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)物體的運(yùn)動(dòng)方程為s=t2-t+2(其中s的單位是米,t的單位是秒),那么物體在t=4秒的瞬時(shí)速度是(  )
A.6米/秒B.7米/秒C.8米/秒D.9米/秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若菱形ABCD的邊長(zhǎng)為2,則|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|=( 。
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知sin(30°+α)=$\frac{3}{5}$,60°<α<150°,則cosα的值是(  )
A.$\frac{3\sqrt{3}-4}{10}$B.$\frac{4}{5}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若經(jīng)過(guò)A(a,-1),B(2,3)的直線的斜率為2,則a等于( 。
A.0B.-1C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若直線(a+1)x-y+2=0與直線x+(a-1)y-1=0平行,則實(shí)數(shù)a的值為0.

查看答案和解析>>

同步練習(xí)冊(cè)答案