(本題14分)已知A、B分別是橢圓的左右兩個焦點,O為坐標原點,點P )在橢圓上,線段PBy軸的交點M為線段PB的中點。
(1)求橢圓的標準方程;
(2)點是橢圓上異于長軸端點的任一點,對于△ABC,求的值。
(1)橢圓的標準方程為=1
(2) 
解:(1)∵點是線段的中點 

是△的中位線
              ………2分
   ………7分
(列式每個1分,計算出a、b各1分)
∴橢圓的標準方程為="1             " ………8分
(2)∵點C在橢圓上,AB是橢圓的兩個焦點
∴AC+BC=2a,AB=2c=2     ………10分
在△ABC中,由正弦定理,   ………12分
               ………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)設橢圓,其相應焦點的準線方程為.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的直線分別交橢圓于點、、,
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分) 已知橢圓E的中心在坐標原點,焦點在x軸上,離心率為,且橢圓E上一點到兩個焦點距離之和為4;是過點P(0,2)且互相垂直的兩條直線,交E于A,B兩點,交E交C,D兩點,AB,CD的中點分別為M,N。
(Ⅰ)求橢圓E的方程;
(Ⅱ)求k的取值范圍;
(Ⅲ)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,短軸長為.
(Ⅰ)求橢圓方程;(Ⅱ)若橢圓與軸正半軸、軸正半軸的交點分別為、,經(jīng)過點且斜率為的直線與橢圓交于不同的兩點、.是否存在常數(shù),使得向量共線?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標系中有兩定點,,若動點M滿足,設動點M的軌跡為C。
(1)求曲線C的方程;
(2)設直線交曲線C于A、B兩點,交直線于點D,若,證明:D為AB的中點。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知點F1,F(xiàn)2為橢圓的兩個焦點,點O為坐標原點,圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點A,B。
(1)設的表達式;
(2)若求直線的方程;
(3)若,求三角形OAB面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知△ABC的頂點B、C在橢圓 +y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是                 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的左焦點F。右頂點A,上頂點B,若,則橢圓的離心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

動點為參數(shù))的軌跡的普通方程為(   )
          B 
          D 

查看答案和解析>>

同步練習冊答案