7.已知幾何體ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,F(xiàn)C∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求證:平面EBD⊥平面BCF;
(Ⅱ)求點B到平面ECD的距離.

分析 (I)先計算BD,BC,利用勾股定理的逆定理證明BD⊥BC,再利用EA⊥平面ABCD得出AE⊥BD,從而有CF⊥BD,故而推出BD⊥平面FBC,于是平面EBD⊥平面BCF;
(II)證明AB∥平面CDE,于是B到平面CDE的距離等于A到平面CDE的距離,過A作AM⊥DE,證明AM⊥平面CDE,于是AM的長即為B到平面CDE的距離.

解答 (I)證明:∵AB∥CD,AD⊥DC,AB=AD=1,CD=2,
∴BD=BC=$\sqrt{2}$,
∴BD2+BC2=CD2
∴BD⊥BC,
∵EA⊥平面ABCD,BD?平面ABCD,
∴EA⊥BD,∵EA∥FC,
∴FC⊥BD,
又BC?平面BCF,F(xiàn)C?平面BCF,BC∩CF=C,
∴BD⊥平面FBC,
又BD?平面BDE,
∴平面BDE⊥平面BCF.
(II)解:過A作AM⊥DE,垂足為M,
∵EA⊥平面ABCD,CD?平面ABCD,
∴EA⊥CD,又CD⊥AD,EA∩AD=A,
∴CD⊥平面EAD,又AM?平面EAD,
∴AM⊥CD,又AM⊥DE,DE∩CD=D,
∴AM⊥平面CDE,
∵AD=AE=1,EA⊥AD,
∴AM=$\frac{\sqrt{2}}{2}$,即A到平面CDE的距離為$\frac{\sqrt{2}}{2}$,
∵AB∥CD,CD?平面CDE,AB?平面CDE,
∴AB∥平面CDE,
∴B到平面CDE的距離為$\frac{\sqrt{2}}{2}$.

點評 本題考查了線面垂直、面面垂直的判定與性質,空間距離的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.集合A={x|y=lg(x-2)},B={y|y=2x,x≥0},則(∁RA)∩B=( 。
A.(0,2)B.[0,2]C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知△ABC的三個內角A,B,C的對應邊分別為a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.則使得sin2B+sin2C=msinBsinC成立的實數(shù)m的取值范圍是[2,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.四棱錐P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,過點B作直線l∥PD,Q為直線l上一動點.
(1)求證:QP⊥AC;
(2)當二面角Q-AC-P的大小為120°時,求QB的長;
(3)在(2)的條件下,求三棱錐Q-ACP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.《九章算術》“勾股”章有一題:“今有二人同立.甲行率七,乙行率三,乙東行,甲南行十步而斜東北與乙會,問甲乙各行幾何?”大意是說:“已知甲、乙二人同時從同一地點出發(fā),甲的速度為7,乙的速度為3,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.甲、乙各走了多少步?”請問乙走的步數(shù)是( 。
A.$\frac{9}{2}$B.$\frac{15}{2}$C.$\frac{21}{2}$D.$\frac{49}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知α∈(0,$\frac{π}{2}$),cos(α+$\frac{π}{3}$)=-$\frac{2}{3}$,則cosα=$\frac{{\sqrt{15}-2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知P(x,y)為不等式組$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x-m≥0}\end{array}}\right.$表示的平面區(qū)域M內任意一點,若目標函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設點M(x,y)滿足不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,點P(-4a,a)(a>0),則當$\overrightarrow{OP}•\overrightarrow{OM}$最大時,點M為( 。
A.(0,2)B.(0,0)C.(4,6)D.(2,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.閱讀如圖所示的程序框圖,運行相應的程序,輸出的S=127.

查看答案和解析>>

同步練習冊答案