分析 (1)設(shè)等比數(shù)列{an}的公比為q≠1,等差數(shù)列{bn}的公差為d,運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式,列方程組,可得公比和公差,進(jìn)而得到所求通項(xiàng)公式;
(2)求得cn=an+bn=3n+(2n+1),運(yùn)用數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,計(jì)算即可得到所求和.
解答 解:(1)設(shè)等比數(shù)列{an}的公比為q≠1,等差數(shù)列{bn}的公差為d.
由b1=a1,b4=a2,b13=a3,
得$\left\{\begin{array}{l}3q=3+3d\\ 3{q^2}=3+12d\end{array}\right.$⇒$\left\{\begin{array}{l}q=1+d\\{q^2}=1+4d\end{array}\right.$⇒q=3或1(舍去),d=2,
所以an=3n,bn=2n+1.
(2)由題意,得cn=an+bn=3n+(2n+1),
Sn=c1+c2+…+cn=(3+5+7+…+2n+1)+(3+32+…+3n)
=$\frac{n(3+2n+1)}{2}$+$\frac{{3(1-{3^n})}}{1-3}$=$\frac{{{3^{n+1}}}}{2}$+n2+2n-$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com