8.在等比數(shù)列{an}中,已知a1=3,公比q≠1,等差數(shù)列{bn}滿(mǎn)足b1=a1,b4=a2,b13=a3
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn

分析 (1)設(shè)等比數(shù)列{an}的公比為q≠1,等差數(shù)列{bn}的公差為d,運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式,列方程組,可得公比和公差,進(jìn)而得到所求通項(xiàng)公式;
(2)求得cn=an+bn=3n+(2n+1),運(yùn)用數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,計(jì)算即可得到所求和.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q≠1,等差數(shù)列{bn}的公差為d.
由b1=a1,b4=a2,b13=a3
得$\left\{\begin{array}{l}3q=3+3d\\ 3{q^2}=3+12d\end{array}\right.$⇒$\left\{\begin{array}{l}q=1+d\\{q^2}=1+4d\end{array}\right.$⇒q=3或1(舍去),d=2,
所以an=3n,bn=2n+1.
(2)由題意,得cn=an+bn=3n+(2n+1),
Sn=c1+c2+…+cn=(3+5+7+…+2n+1)+(3+32+…+3n
=$\frac{n(3+2n+1)}{2}$+$\frac{{3(1-{3^n})}}{1-3}$=$\frac{{{3^{n+1}}}}{2}$+n2+2n-$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)F是AB邊上動(dòng)點(diǎn),點(diǎn)E是棱B1B的中點(diǎn).
(Ⅰ)求證:D1F⊥A1D;
(Ⅱ)求多面體ABCDED1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知不等式ax2+5x+b>0的解集是{x|2<x<3},則不等式bx2-5x+a>0的解集是(-$\frac{1}{2}$,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,AB=2,BC=1,∠ABC=120°若將△ABC繞直線BC旋轉(zhuǎn)一周,則所形的旋轉(zhuǎn)體的體積是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若cosα=$\frac{1}{2}$,α∈(0,π),則cos($\frac{π}{2}$-α)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=sin x+cos x.
(1)若f(x)=2f(-x),求$\frac{co{s}^{2}x-sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函數(shù)F(x)=f(x)f(-x)+f 2(x),x∈(0,$\frac{π}{2}$)的值域和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系中,已知點(diǎn)O(0,0),A(3,0),B(0,3),C(cosα,sinα).
(1)若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,求$\frac{{2{{sin}^2}α+sin2α}}{1+tanα}$的值;
(2)若f(α)=-2cos2α-tsinα-t2+2在$α∈(\frac{π}{2},\frac{3π}{2})$時(shí)有最小值-1,求常數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn且a=$\frac{1}{2}$,an=-2Sn•Sn-1,(n≥2).
(1)數(shù)列{$\frac{1}{{S}_{n}}$}是否為等差數(shù)列,證明你的結(jié)論;
(2)求Sn,an
(3)求證:S${\;}_{1}^{2}$+S${\;}_{2}^{2}$+S${\;}_{3}^{2}$+…S${\;}_{n}^{2}$<$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥AC,AB=AC=AA1,D為BC的中點(diǎn).
(1)證明:A1B⊥平面AB1C;
(2)求直線A1D與平面AB1C所成的角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案