【題目】設(shè)函數(shù),其中e為自然對數(shù)的底數(shù).

1)當a0時,求函數(shù)f (x)的單調(diào)減區(qū)間;

2)已知函數(shù)f (x)的導函數(shù)f (x)有三個零點x1,x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數(shù)f (x)的兩個零點,證明:x1m1x1 1.

【答案】1;(2)①②證明見解析

【解析】

1)當,,,即可求得單調(diào)減區(qū)間;

2)①,,有三個零點轉(zhuǎn)化為有三個零點,求導,可得的單調(diào)性,進而得到的范圍;

②將有兩個零點轉(zhuǎn)化為方程有兩個零點,則可得,,進而得到,,從而得證

1)當,,

,

,可得,

的單調(diào)減區(qū)間為

2)①由題,,

,,設(shè),

的三個零點,

,

,,單調(diào)遞減,不符合條件;

,,,

,單調(diào)遞增,,單調(diào)遞減,

,

,,

,

的兩個零點,,則方程的兩根分別為,

,

,,,,,

由①,

,

,

,,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)求實數(shù)的值,使得為奇函數(shù);

(2)若關(guān)于的方程有兩個不同實數(shù)解,求的取值范圍;

(3)若關(guān)于的不等式對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,D,E分別為BC,AC的中點,AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程

(2)射線與曲線分別交于兩點(異于原點),定點,的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓焦點在軸上,離心率為,上焦點到上頂點距離為.

1)求橢圓的標準方程;

2)直線與橢圓交與兩點,為坐標原點,的面積,則是否為定值,若是求出定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是圓的直徑,點是圓上異于,的點,直線平面,,分別是的中點.

(Ⅰ)記平面與平面的交線為,試判斷直線與平面的位置關(guān)系,并加以證明;

(Ⅱ)設(shè),求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某公司20181月至12月空調(diào)銷售任務及完成情況的氣泡圖,氣泡的大小表示完成率的高低,如10月份銷售任務是400臺,完成率為90%,則下列敘述不正確的是(

A. 20183月的銷售任務是400

B. 2018年月銷售任務的平均值不超過600

C. 2018年第一季度總銷售量為830

D. 2018年月銷售量最大的是6月份

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內(nèi),動點到定點的距離與到定直線的距離之比為

1)求動點的軌跡的方程;

2)若軌跡上的動點到定點的距離的最小值為1,求的值;

3)設(shè)點、是軌跡上兩個動點,直線與軌跡的另一交點分別為、,且直線的斜率之積等于,問四邊形的面積是否為定值?請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),下列命題:

既不是奇函數(shù),也不是偶函數(shù)

②若是三角形的內(nèi)角,是增函數(shù)

③若是三角形的內(nèi)角, 有最大值而無最小值

的最小正周期是

其中真命題的序號是(

A.①②B.①③C.②③D.②④

查看答案和解析>>

同步練習冊答案