19.已知復(fù)數(shù)z=$\frac{2-i}{1+i}$,其中i是虛數(shù)單位,則z的模是$\frac{\sqrt{10}}{2}$.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.

解答 解:∵z=$\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
∴|z|=$\sqrt{(\frac{1}{2})^{2}+(-\frac{3}{2})^{2}}=\frac{\sqrt{10}}{2}$.
故答案為:$\frac{\sqrt{10}}{2}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,其前n項(xiàng)和為Sn,且a2•a3=40,S4=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的前n項(xiàng)和為Tn,且b1=1,3bn+1=2(a${\;}_{_{n}}$+1).
①求證:數(shù)列{bn}是等比數(shù)列;
②求滿足Sn>Tn的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax2+(a-2)x-2,a∈R.
(1)若關(guān)于x的不等式f(x)≤0的解集為[-1,2],求實(shí)數(shù)a的值;
(2)當(dāng)a<0時(shí),解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知{an}為等差數(shù)列,a1+a2+a3=-3,a4+a5+a6=6,則Sn=$\frac{{n}^{2}-5n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow$=(3cosx,-2cosx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的最小正周期;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=x2-cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],則滿足f(x0)>f($\frac{π}{6}$)的x0的取值范圍為[-$\frac{π}{2}$,-$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,若sin2B+$\sqrt{2}sinBsinC={sin^2}A-{sin^2}$C,則A的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,OA、OB是兩條公路(近似看成兩條直線),$∠AOB=\frac{π}{3}$,在∠AOB內(nèi)有一紀(jì)念塔P(大小忽略不計(jì)),已知P到直線OA、OB的距離分別為PD、PE,PD=6千米,PE=12千米.現(xiàn)經(jīng)過(guò)紀(jì)念塔P修建一條直線型小路,與兩條公路OA、OB分別交于點(diǎn)M、N.
(1)求紀(jì)念塔P到兩條公路交點(diǎn)O處的距離;
(2)若紀(jì)念塔P為小路MN的中點(diǎn),求小路MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知cos($α-\frac{π}{3}$)-cosα=$\frac{1}{3}$,則cos($α+\frac{π}{3}$)的值為( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案