13.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,a-b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,b=2,求c.

分析 (1)由正弦定理可知a-b=bcosC,則sinA-sinB=sinBcosC,由A=π-(B+C),根據(jù)誘導(dǎo)公式及兩角和的正弦公式,即可求得sinC=tanB;
(2)由題意求得$cosC=-\frac{1}{2}$,利用余弦定理即可求得c的值.

解答 解:(1)由正弦定理可知:$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2R,則a=2RsinA,b=2RsinB,c=2RsinC,
由a-b=bcosC,則sinA-sinB=sinBcosC,
由A=π-(B+C),則sinA=sin[π-(B+C)]=sin(B+C),
即sin(B+C)=sinB+sinBcosC,sinBcosC+cosBsinC=sinB+sinBcosC,
sinCcosB=sinB,tanB=$\frac{sinB}{cosB}$,
∴sinC=tanB.
(Ⅱ)由a-b=bcosC,且a=1,b=2,得$cosC=-\frac{1}{2}$,
由余弦定理,${c^2}={a^2}+{b^2}-2abcosC=1+4-2×1×2×({-\frac{1}{2}})=7$,
∴$c=\sqrt{7}$,
c的值為$\sqrt{7}$.

點(diǎn)評(píng) 本題考查正弦定理及余弦定理的應(yīng)用,兩角和的正弦公式,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知sin($\frac{π}{3}$+$\frac{α}{6}$)=-$\frac{3}{5}$,cos($\frac{π}{12}$-$\frac{β}{2}$)=-$\frac{12}{13}$,-5π<α<-2π,-$\frac{11π}{6}$<β<$\frac{π}{6}$,求sin($\frac{α}{6}$+$\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某校高二年級(jí)共有2000人,其中男生1100人,女生900人,為調(diào)查該年級(jí)學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分成抽樣的方法抽取200人進(jìn)行分析,統(tǒng)計(jì)的數(shù)據(jù)如表(時(shí)間單位:小時(shí)).
男、女運(yùn)動(dòng)時(shí)間情況的調(diào)查表:
 時(shí)間 (0,2)[2,4)[4,6)[6,8) 8小時(shí)以上
 男生人數(shù) 10 25 35 30 x
 女生人數(shù) 15 30 25 y 5
(Ⅰ)計(jì)算x,y的值,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面的每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該級(jí)部學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
  男生 女生 總計(jì)
 平均時(shí)間不超過(guò)6小時(shí)   
 
 平均時(shí)間超過(guò)6小時(shí)
   
 總計(jì)   
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ P(K2≥k) 0.10  0.05 0.0100.005 
 k  2.7063.841 6.635 7.789
(Ⅱ)在每周平均體育運(yùn)動(dòng)時(shí)間在8小時(shí)以上的被調(diào)查的人中,喜歡乒乓球的有6人,其中男生4人,女生2人;級(jí)部決定從這4名男省中選2人,2名女生中選1人,組成代表隊(duì)參加校運(yùn)動(dòng)會(huì),則男生A和女生E恰好都被選中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓${O_1}:{x^2}+{y^2}=1$與圓${O_{2:}}{({x-3})^2}+{({y+4})^2}=16$,則兩圓的位置關(guān)系為( 。
A.相交B.內(nèi)切C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.當(dāng)今信息時(shí)代,眾多中小學(xué)生也配上了手機(jī).某機(jī)構(gòu)為研究經(jīng)常使用手機(jī)是否對(duì)學(xué)習(xí)成績(jī)有影響,在某校高三年級(jí)50名理科生第人的10次數(shù)學(xué)考成績(jī)中隨機(jī)抽取一次成績(jī),用莖葉圖表示如圖:
(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為經(jīng)常使用手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?
及格(60及60以上)不及格合計(jì)
很少使用手機(jī)20727
經(jīng)常使用手機(jī)101323
合計(jì)302050
(Ⅱ)從50人中,選取一名很少使用手機(jī)的同學(xué)(記為甲)和一名經(jīng)常使用手機(jī)的同學(xué)(記為乙)解一道函數(shù)題,甲、乙獨(dú)立解決此題的概率分別為P1,P2,P2=0.4,若P1-P2≥0.3,則此二人適合為學(xué)習(xí)上互幫互助的“對(duì)子”,記X為兩人中解決此題的人數(shù),若E(X)=1.12,問(wèn)兩人是否適合結(jié)為“對(duì)子”?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.100.050.025
k02.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=$\left\{\begin{array}{l}{0,x∈\{0,4\}}\\{{x}^{2}-2x+3,0<x≤2}\\{|x-3|,2<x<4}\end{array}\right.$,若f(x)=kx有三個(gè)不同的根,則實(shí)數(shù)k的取值范圍是( 。
A.(0,$\frac{1}{4}$)∪(2$\sqrt{3}$-2,$\frac{3}{2}$]B.[0,$\frac{1}{4}$)∪(2$\sqrt{3}$-2,$\frac{3}{2}$]C.[0,$\frac{1}{4}$]∪(2$\sqrt{3}$-2,$\frac{3}{2}$]D.(0,$\frac{1}{4}$]∪(2$\sqrt{3}$-2,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.春節(jié)期間和諧小區(qū)從初一至初八連續(xù)8天舉辦大型文藝匯演,居民甲隨機(jī)選擇其中的連續(xù)3天觀看演出,那么他在初一至初四期間連續(xù)3天看演出的概率為( 。
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,z1=1+2i,i為虛數(shù)單位,則z1z2=( 。
A.1-2iB.5iC.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川省高二上學(xué)期期中考數(shù)學(xué)試卷(解析版) 題型:選擇題

命題“若,則”的否命題是( )

A.若,則

B.若,則

C.若,則

D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案