8.已知i是虛數(shù)單位,若復(fù)數(shù)z=(2-i)(2+ai)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限內(nèi),則實(shí)數(shù)a的值可以是( 。
A.-2B.1C.2D.3

分析 復(fù)數(shù)z=(2-i)(2+ai)=4+a+(2a-2)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)(4+a,2a-2)在第四象限內(nèi),可得:$\left\{\begin{array}{l}{4+a>0}\\{2a-2<0}\end{array}\right.$,解出即可判斷出結(jié)論.

解答 解:復(fù)數(shù)z=(2-i)(2+ai)=4+a+(2a-2)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)(4+a,2a-2)在第四象限內(nèi),
∴$\left\{\begin{array}{l}{4+a>0}\\{2a-2<0}\end{array}\right.$,解得-4<a<1.
則實(shí)數(shù)a的值可以是-2.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=$\sqrt{{2^x}-4}$的定義域?yàn)椋ā 。?table class="qanwser">A.RB.(-2,2)C.(-∞,-$\sqrt{2}$)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=$\frac{1+sinx+cosx+2sinxcosx}{1+sinx+cosx}$-cosx,
(1)求f(x)的周期及f($\frac{π}{4}$);
(2)若f(α)+cosα=$\frac{1}{5}$,α∈(0,π),求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+2y≤8\\ 2x+y≤10\\ x≥0\\ y≥0\end{array}\right.$,那么z=3x+y的最大值為(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在公差不為0的等差數(shù)列{an}中,a3+a10=15,且a2,a5,a11成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若函數(shù)g(x)=f(x)-ax恰有兩個(gè)零點(diǎn)時(shí),則實(shí)數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{4}$)C.[$\frac{1}{4}$,$\frac{1}{e}$)D.[$\frac{1}{4}$,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.三點(diǎn)A(3,1),B(-2,k),C(8,11)在一條直線上,k的值為(  )
A.-8B.-9C.-6D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知數(shù)列{an}滿足a1=1,a2<0,對(duì)任意的n∈N*,恒有|an+1-an|=2n,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,則數(shù)列{an}的通項(xiàng)公式為an=$\frac{1-{(-2)}^{n}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=ax2+(b-8)x-a-ab,已知不等式f(x)<0的解集是(-∞,-3)∪(2,+∞),
(1)求a和b的值;
(2)已知命題p:?x∈R,ax2+bx+c≤0,命題q:?x∈R,x2+2$\sqrt{3}$x-c=0.如果p∨(¬q)是真命題,p∧(¬q)是假命題,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案