20.若復(fù)數(shù)z=$\frac{2}{(1-i)^{2}}$+$\frac{3+i}{1-i}$的虛部為m,函數(shù)f(x)=x+$\frac{4}{x-1}$,x∈[2,3]的最小值為n.
(1)求m,n;
(2)求由曲線y=x,直線x=m,x=n以及x軸所圍成平面圖形的面積.

分析 (1)由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求得m,利用基本不等式求最值求得n;
(2)根據(jù)定積分的幾何意義即可求出.

解答 解:(1)z=$\frac{2}{(1-i)^{2}}$+$\frac{3+i}{1-i}$=$\frac{2}{1-1-2i}$+$\frac{(3+i)(1+i)}{(1-i)(1+i)}$=i+1+2i=1+3i,
∴m=3,
∵f(x)=x+$\frac{4}{x-1}$=x-1+$\frac{4}{x-1}$+1≥2$\sqrt{(x-1)•\frac{4}{x-1}}$+1=5,當(dāng)且僅當(dāng)x=3時(shí)取等號(hào),
∴n=5,
(2)由曲線y=x,直線x=m,x=n以及x軸所圍成平面圖形的面積S=${∫}_{3}^{5}$xdx=$\frac{1}{2}$x2|${\;}_{3}^{5}$=$\frac{1}{2}$(25-9)=8

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了函數(shù)值域的求法,和定積分的計(jì)算,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-1),若k$\overrightarrow{a}$+$\overrightarrow$⊥$\overrightarrow{a}$-2$\overrightarrow$,則k=( 。
A.3B.2C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.曲線y=1+$\sqrt{4-{x}^{2}}$與直線y=k(x-2)+4有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是( 。
A.$\frac{5}{12}$<k<$\frac{3}{4}$B.$\frac{5}{12}$<k≤$\frac{3}{4}$C.$\frac{1}{3}$<k<$\frac{3}{4}$D.0<k<$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.復(fù)數(shù)z=$\sqrt{3}$+i對(duì)應(yīng)的點(diǎn)在復(fù)平面(  )
A.第四象限內(nèi)B.實(shí)軸上C.虛軸上D.第一象限內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求實(shí)數(shù)a的值,并討論f(x)的單調(diào)性;
(2)證明:對(duì)任意的正整數(shù)n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.有6名男醫(yī)生,從中選出2名男醫(yī)生組成一個(gè)醫(yī)療小組,則不同的選法共有( 。
A.60種B.15種C.30種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2-an,n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=n•an,求數(shù)列{bn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示的程序框圖,若輸入的a、k分別89、2,則輸出的數(shù)為(  )
A.1011001(2)B.1101001(2)C.1110010(2)D.1011010(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量$\overrightarrow{m}$=(a,$\sqrt{3}$b)與$\overrightarrow{n}$=(cosA,sinB)平行.
(I)求A;
(II)若a=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求該三角形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案