7.如果sinα•cosα<0,sinα•tanα>0,那么角$\frac{α}{2}$的終邊在( 。
A.第一或第三象限B.第二或第四象限C.第一或第二象限D.第三或第四象限

分析 由題意可得α在第四象限,進(jìn)而得出結(jié)論

解答 解:∵sinα•cosα<0,sinα•tanα>0,
∴sinα<0,cosα>0,tanα<0,
∴α在第四象限,
∴$\frac{3π}{2}$+2kπ<α<2kπ+2π,k∈Z.
∴$\frac{3π}{4}$+kπ<$\frac{α}{2}$<kπ+π,k∈Z
當(dāng)k為偶數(shù)時(shí),$\frac{α}{2}$在第二象限,
當(dāng)k為奇數(shù)時(shí),$\frac{α}{2}$在第四象限,
那么角的終邊在第二或第四象限.
故選:B.

點(diǎn)評(píng) 本題考查了三角函數(shù)值的符號(hào)、分類(lèi)討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.集合A={x|x≥0},B={x|x2-1<0},則A∩B=( 。
A.(-1,0]B.[0,1]C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD是正三角形,且平面PAD⊥平面ABCD.
(1)求證:AB⊥平面PAD;
(2)求直線(xiàn)PC與底面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=|2x-1|+|ax-5|(0<a<5).
(1)當(dāng)a=1時(shí),求不等式f(x)≥9的解集;
(2)如果函數(shù)y=f(x)的最小值為4,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=|lnx|,a>b>0,f(a)=f(b),則$\frac{{{a^2}+{b^2}}}{a-b}$的最小值等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若|$\overrightarrow{a}$|=5,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=-2,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影等于-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某小區(qū)現(xiàn)有住房的面積為a平方米,在改造過(guò)程中政府決定每年拆除b平方米舊住房,同時(shí)按當(dāng)?shù)曜》棵娣e的10%建設(shè)新住房,則n年后該小區(qū)的住房面積為(  )
A.a•1.1n-nbB.a•1.1n-10b(1.1n-1)
C.n(1.1a-1)D.(a-b)1.1n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,F(xiàn)1、F2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn),過(guò)F1且與x軸垂直的直線(xiàn)與橢圓交于B,C兩點(diǎn),且∠BF2C=90°,則該橢圓的離心率是$\sqrt{2}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在(a-b)20的二項(xiàng)展開(kāi)式中,二項(xiàng)式系數(shù)與第7項(xiàng)系數(shù)相同的項(xiàng)是( 。
A.第15項(xiàng)B.第16項(xiàng)C.第17項(xiàng)D.第18項(xiàng)

查看答案和解析>>

同步練習(xí)冊(cè)答案