10.下列說法正確的是( 。
A.“x2+x-2>0”是“x>1”的充分不必要條件
B.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0”
C.“若am2<bm2,則a<b”的逆否命題為真命題
D.命題“若$x=\frac{π}{4},則tanx=1$”的逆命題為真命題

分析 A由x2+x-2>0時(shí),x>1或x<-2,得出“x2+x-2>0”是“x>1”必要不充分條件;
B寫出命題“?x∈R,使得2x2-1<0”的否定命題,判斷B錯(cuò)誤;
C判斷原命題是真命題,得出它的逆否命題也為真命題;
D寫出原命題的逆命題并判斷它的真假性.

解答 解:對(duì)于A,x2+x-2>0時(shí),x>1或x<-2,
∴“x2+x-2>0”是“x>1”必要不充分條件,A錯(cuò)誤;
對(duì)于B,命題“?x∈R,使得2x2-1<0”的否定是
“?x∈R,均有2x2-1≥0”,∴B錯(cuò)誤;
對(duì)于C,“若am2<bm2,則a<b”是真命題,
∴它的逆否命題為真命題,C正確;
對(duì)于D,“若$x=\frac{π}{4},則tanx=1$”的逆命題是
“若tanx=1,則x=$\frac{π}{4}$”,它是假命題,D錯(cuò)誤.
故選:C.

點(diǎn)評(píng) 本題考查了四種命題之間的關(guān)系與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某幾何體的三視圖如圖所示,則該幾何體的表面積為16+2$\sqrt{3}$+2$\sqrt{5}$;體積為$\frac{20}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AC⊥BC,BC=C1C=$\frac{1}{2}AC$=1,D是A1C1上的一點(diǎn),且C1D=kA1C1
(Ⅰ) 求證:不論k為何值,AD⊥BC;
(Ⅱ) 當(dāng)k=$\frac{1}{2}$時(shí),求A點(diǎn)到平面BCD的距離;
(Ⅲ) DB與平面ABC所成角θ的余弦值為$\frac{{\sqrt{5}}}{3}$,求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=sin($\frac{5π}{3}$x+$\frac{π}{6}$)+$\frac{3x}{2x-1}$,則f($\frac{1}{2016}$)+f($\frac{3}{2016}$)+f($\frac{5}{2016}$)+f($\frac{7}{2016}$)+…f($\frac{2015}{2016}$)=1512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.炮兵習(xí)慣于把周角的$\frac{1}{6000}$作為度量角的單位,稱為“密位“,1°及1弧度分別等于多少密位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.兩定點(diǎn)A(-2,0),B(2,0)及定直線$l:x=\frac{10}{3}$,點(diǎn)P是l上一個(gè)動(dòng)點(diǎn),過B作BP的垂線與AP交于點(diǎn)Q,則點(diǎn)Q的軌跡方程為$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a∈R,函數(shù)$f(x)=\frac{2}{x}+alnx$.
(Ⅰ)若函數(shù)f(x)在(0,2)上遞減,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a>0時(shí),求f(x)的最小值g(a)的最大值;
(Ⅲ)設(shè)h(x)=f(x)+|(a-2)x|,x∈[1,+∞),求證:h(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)f(x)=x8+3,求f(x)除以x+1所得的余數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,若b=2,A=120°,三角形的面積$S=2\sqrt{3}$,則a=2$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案