6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩個焦點分別為F1、F2,以線段F1F2為直徑的圓與雙曲線的漸近線在第一象限的交點為M,若|MF1|-|MF2|=2b,該雙曲線的離心率為e,則e2=( 。
A.2B.$\frac{\sqrt{2}+1}{2}$C.$\frac{3+2\sqrt{2}}{2}$D.$\frac{\sqrt{5}+1}{2}$

分析 聯(lián)立圓與漸近線方程,求得M的坐標(biāo),利用兩點之間的距離公式,化簡即可求得雙曲線的離心率.

解答 解:由題意可知:以線段F1F2為直徑的圓的方程x2+y2=c2,
雙曲線經(jīng)過第一象限的漸近線方程為y=$\frac{a}$x,
聯(lián)立方程$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}={c}^{2}}\\{y=\frac{a}x}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=a}\\{y=b}\end{array}\right.$,
則M(a,b),
由|MF1|-|MF2|=2b,即$\sqrt{(a+c)^{2}+^{2}}$-$\sqrt{(a-c)^{2}+^{2}}$=2b,
由b2=a2-c2,e=$\frac{c}{a}$,
化簡整理得:e4-e2-1=0,
由求根公式可知e2=$\frac{1±\sqrt{5}}{2}$,由e>1,
則e2=$\frac{\sqrt{5}+1}{2}$,
故選D.

點評 本題考查雙曲線的簡單幾何性質(zhì),點到直線的距離公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,若實數(shù)a滿足$f({2^{a-1}})>f(-\sqrt{2})$,則a的取值范圍是(1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2c2=2a2+2b2+ab,則△ABC的形狀是鈍角三角形.(填“直角”、“鈍角”或“銳角”等)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)$f(x)=\frac{ax}{{{x^2}+1}}(a>0)$的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示是一個幾何體的三視圖,則這個幾何體的體積為$\frac{57}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知a>0,求證:$\sqrt{a+5}-\sqrt{a+3}>\sqrt{a+6}-\sqrt{a+4}$
(2)證明:若a,b,c均為實數(shù),且$a={x^2}-2y+\frac{π}{2}$,$b={y^2}-2z+\frac{π}{3}$,$c={z^2}-2x+\frac{π}{6}$,求證:a,b,c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C:(x+2)2+y2=5,直線l:mx-y+1+2m=0,m∈R.
(1)求證:對m∈R,直線l與圓C總有兩個不同的交點A、B;
(2)求弦AB的中點M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數(shù)m,使得圓C上有四點到直線l的距離為$\frac{{4\sqrt{5}}}{5}$?若存在,求出m的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)α=300°,則與α終邊相同的角的集合為( 。
A.{α|α=k•360°-30°,k∈Z}B.{α|α=k•360°-60°,k∈Z}
C.{α|α=k•360°+30°,k∈Z}D.{α|α=k•360°+60°,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.正三棱柱ABC-A1B1C1底面△ABC的邊長為3,此三棱柱的外接球的半徑為$\sqrt{7}$,則異面直線AB1與BC1所成角的余弦值為$\frac{23}{50}$.

查看答案和解析>>

同步練習(xí)冊答案