15.在正方體ABCD-A1B1C1D1中,與AB異面且垂直的棱共有4條.

分析 畫出正方體,利用數(shù)形結(jié)合思想能求出結(jié)果.

解答 解:如圖,在正方體ABCD-A1B1C1D1中,
與AB異面且垂直的棱有:
DD1,CC1,A1D1,B1C1,共4條.
故答案為:4.

點(diǎn)評 本題考查正方體中滿足條件的棱的個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意正方體的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓方程為x2+y2-2x-9=0,直線方程mx+y+m-2=0,那么直線與圓的位置關(guān)系( 。
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“若x>2,則x2-3x+2>0”的否命題是( 。
A.若x2-3x+2<0,則x≥2B.若x≤2,則x2-3x+2≤0
C.若x2-3x+2<0,則x≥2D.若x2-3x+2≤0,則x≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{16}{3}$C.8D.$\frac{128}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(1)若函數(shù)f(x)在(1,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)m,n∈(0,+∞),且m≠n,求證:$\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若橢圓上存在點(diǎn)P,滿足∠F1PF2=120°,則該橢圓的離心率的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.把半橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(x≥0)與圓。▁-c)2+y2=a2(x<0)合成的曲線稱作“曲圓”,其中F(c,0)為半橢圓的右焦點(diǎn).如圖,A1,A2,B1,B2
分別是“曲圓”與x軸、y軸的交點(diǎn),已知∠B1FB2=$\frac{2π}{3}$,扇形FB1A1B2的面
積為$\frac{4π}{3}$.
(1)求a,c的值; 
(2)過點(diǎn)F且傾斜角為θ的直線交“曲圓”于P,Q兩點(diǎn),試將△A1PQ的周長L表示為θ的函數(shù);
(3)在(2)的條件下,當(dāng)△A1PQ的周長L取得最大值時(shí),試探究△A1PQ的面積是否為定值?若是,請求出該定值;若不是,請求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+{3}^{x,x≥1}}\\{2x-1,x<1}\end{array}\right.$,則f[f(0)+2]等于( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在平行四邊形ABCD中,$\overrightarrow{AC}$=(3,2),$\overrightarrow{BD}$=(-1,2),則$\overrightarrow{AC}$•$\overrightarrow{AD}$等于( 。
A.1B.6C.-7D.7

查看答案和解析>>

同步練習(xí)冊答案