5.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=2$\sqrt{3}$sinθ.
(1)寫(xiě)出直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P的直角坐標(biāo)為(1,0),圓C與直線l交于A、B兩點(diǎn),求|PA|+|PB|的值.

分析 (1)直線l的參數(shù)方程消去參數(shù)t,能求出直線l的普通方程,圓C的方程轉(zhuǎn)化為${ρ}^{2}=2\sqrt{3}ρsinθ$,由此能求出圓C的直角坐標(biāo)方程.
(2)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程化簡(jiǎn)整理得:${t}^{2}-2\sqrt{3}t+1=0$,由t的幾何意義能求出|PA|+|PB|的值.

解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.,(t為參數(shù))$,
消去參數(shù)t,得:x+$\sqrt{3}y$-1=0,
圓C的方程為$ρ=2\sqrt{3}sinθ$,即${ρ}^{2}=2\sqrt{3}ρsinθ$,即${x}^{2}+{y}^{2}=2\sqrt{3}y$,
即${x}^{2}+(y-\sqrt{3})^{2}=3$為圓C的直角坐標(biāo)方程.
(2)將l的參數(shù)方程$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.,(t為參數(shù))$代入圓C的直角坐標(biāo)方程化簡(jiǎn)整理得:
${t}^{2}-2\sqrt{3}t+1=0$,由t的幾何意義得:
|PA|+|PB|=t1+t2=2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查曲線的直線坐標(biāo)方程、直線的普通方程的求法,考查兩線段的之和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意極坐標(biāo)、直線坐標(biāo)互化公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若復(fù)數(shù)z滿(mǎn)足(-3+4i)$\overline{z}$=25i,其中i為虛數(shù)單位,則z=( 。
A.4-3iB.4+3iC.-5+3iD.3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知定義在R上的函數(shù)y=f(x)滿(mǎn)足條件f(x+$\frac{3}{2}$)=-f(x),且函數(shù)y=f(x-$\frac{3}{4}$)為奇函數(shù),給出以下四個(gè)命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{3}{4}$,0)對(duì)稱(chēng);
③函數(shù)f(x)為R上的偶函數(shù);
④函數(shù)f(x)為R上的單調(diào)函數(shù);
其中真命題的序號(hào)為①②③(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=2log2x,$g(x)={log_2}{x^2}$B.f(x)=|x|,$g(x)={(\sqrt{x})^2}$
C.f(x)=x,$g(x)=lo{g_2}{2^x}$D.f(x)=x+1,$g(x)=\frac{x^2}{x}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知命題p:方程x2-2x+m=0有實(shí)根,命題q:m∈[-1,5].
(1)當(dāng)命題p為真命題時(shí),求實(shí)數(shù)m的取值范圍;
(2)若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,AB=7,BC=5,CA=6,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=-19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.?dāng)?shù)列{2n-1}的前n項(xiàng)1,3,7,…,2n-1組成集合${A_n}=\left\{{1,3,7,{2^n}-1}\right\}$(n∈N*),從集合An中任取k(k=1,2,3,…,n)個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為T(mén)k(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn,例如當(dāng)n=1時(shí),A1={1},T1=1,S1=1;當(dāng)n=2時(shí),A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,試寫(xiě)出Sn=${2}^{\frac{n(n+1)}{2}}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱(chēng),且滿(mǎn)足f(x)+f′(x)=2ex,若a=f(-3),b=f(lnπ),c=f(|sinx|),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知命題p:x2-5x-6≤0;命題q:x2-6x+9-m2≤0,若¬p是¬q的充分不必要條件,則實(shí)數(shù)m的取值范圍是[-3,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案