2.命題“?x∈R,x2-x+1>0”的否定是( 。
A.?x∈R,x2-x+1≤0B.?x∈R,x2-x+1<0
C.?x0∈R,x02-x0+1≤0D.?x0∈R,x02-x0+1<0

分析 欲寫出命題的否定,必須同時改變兩個地方:①:“?”;②:“>”即可,據(jù)此分析選項可得答案.

解答 解:命題“?x∈R,x2+x+1>0“的否定是?x0∈R,x02-x0+1≤0,
故選:C.

點評 這類問題的常見錯誤是沒有把全稱量詞改為存在量詞,或者對于“>”的否定用“<”了.這里就有注意量詞的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特稱命題的否定是全稱命題,“存在”對應(yīng)“任意”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)x,y,z都是正數(shù),則三個數(shù)$x+\frac{1}{y},y+\frac{1}{z},z+\frac{1}{x}$(  )
A.都大于2B.至少有一個不小于2
C.至少有一個大于2D.至少有一個不大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象中相鄰對稱中心的距離為$\frac{π}{2}$,若角φ的終邊經(jīng)過點(3,$\sqrt{3}$),則f(x)圖象的一條對稱軸為( 。
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{3}$D.x=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某部門有8位員工,其中6位員工的月工資分別為8200,8300,8500,9100,9500,9600(單位:元),另兩位員工的月工資數(shù)據(jù)不清楚,但兩人的月工資和為17000元,則這8位員工月工資的中位數(shù)可能的最大值為8800元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面向量$\overrightarrow a$、$\overrightarrow b$都是單位向量,若$\overrightarrow b⊥(2\overrightarrow a-\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)數(shù)列{an}的前n項和為Sn,若Sn,Sn-1,Sn+1(n≥2)成等差數(shù)列,且a2=-2,則a4=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos75°cos15°-sin255°sin165°的值是( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.為了活躍學(xué)生課余生活,我校高三年級部計劃使用不超過1200元的資金購買單價分別為90元、120元的排球和籃球.根據(jù)需要,排球至少買3個,籃球至少買2個,并且排球的數(shù)量不得超過籃球數(shù)量的2倍,則能買排球和籃球的個數(shù)之和的最大值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知z=(m+4)+(m-2)i在復(fù)平面內(nèi)對應(yīng)的點在第三象限,則實數(shù)m的取值范圍是( 。
A.(-4,2)B.(-2,4)C.(2,+∞)D.(-∞,-4)

查看答案和解析>>

同步練習(xí)冊答案