A. | [2,+∞) | B. | (2,+∞) | C. | (0,2) | D. | (0,2] |
分析 依題意知,f′(x)=$\frac{a}{x}$+x2≥3(x>0)恒成立,判斷a 的符號(hào),利用基本不等式求解最小值,然后推出a的范圍即可.
解答 解:∵f(x)=alnx+$\frac{1}{3}$x3(a>0),對(duì)任意兩個(gè)不等的正實(shí)數(shù)x1、x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>3$恒成立,
∴f′(x)=$\frac{a}{x}$+x2≥3(x>0)恒成立,可知a>0.
不等式化為:$\frac{a}{2x}+\frac{a}{2x}+{x}^{2}$≥3,
可得$3\root{3}{\frac{a}{2x}•\frac{a}{2x}•{x}^{2}}$≥3,當(dāng)且僅當(dāng)a=2x3,時(shí)取等號(hào).
即a2≥4,解得a≥2.
即a的取值范圍是[2,+∞).
故選:A.
點(diǎn)評(píng) 本題考查函數(shù)恒成立問(wèn)題,考查基本不等式在最值中的應(yīng)用,考查轉(zhuǎn)化思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1)(3)(4) | B. | (2)(3)(4) | C. | (2)(4) | D. | (2)(3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{2-ln2}{2}$ | C. | 3 | D. | $\frac{9-ln2}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (1,2) | C. | (2,+∞) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com