9.如圖,在平行四邊形ABCD中,已知AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是( 。
A.8B.12C.22D.24

分析 根據平面向量的線性表示與數(shù)量積運算的定義,用$\overrightarrow{AB}$、$\overrightarrow{AD}$表示出$\overrightarrow{AP}$、$\overrightarrow{BP}$,
代入$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,即可求出$\overrightarrow{AB}$•$\overrightarrow{AD}$的值.

解答 解:如圖所示,
平行四邊形ABCD中,AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,
∴$\overrightarrow{AP}$=$\overrightarrow{AD}$+$\overrightarrow{DP}$=$\overrightarrow{AD}$+$\frac{1}{4}$$\overrightarrow{AB}$,
$\overrightarrow{BP}$=$\overrightarrow{BC}$+$\overrightarrow{CP}$=$\overrightarrow{AD}$-$\frac{3}{4}$$\overrightarrow{AB}$,
∴$\overrightarrow{AP}$•$\overrightarrow{BP}$=($\overrightarrow{AD}$+$\frac{1}{4}$$\overrightarrow{AB}$)•($\overrightarrow{AD}$-$\frac{3}{4}$$\overrightarrow{AB}$)
=${\overrightarrow{AD}}^{2}$-$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-$\frac{3}{16}$${\overrightarrow{AB}}^{2}$
=52-$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-$\frac{3}{16}$×82=2,
∴$\overrightarrow{AB}$•$\overrightarrow{AD}$=22.
故選:C.

點評 本題考查了向量在幾何中的應用以及平面向量數(shù)量積的運算問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知拋物線y2=4x的焦點為F,過焦點F的直線交拋物線于A、B兩點,O為坐標原點,若|AB|=6,則△AOB的面積為( 。
A.$\sqrt{6}$B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$α∈({0\;,\;\;\frac{π}{2}})\;,\;\;sinα=\frac{{\sqrt{5}}}{5}$.
(1)求$sin({α+\frac{π}{4}})$的值;
(2)求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.某空間幾何體的三視圖如圖所示,則該幾何體的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.等比數(shù)列{an}的各項均為正數(shù),2a5,a4,4a6成等差數(shù)列,且滿足a4=4a32
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=$\frac{{a}_{n+1}}{(1-{a}_{n})(1-{a}_{n+1})}$,n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.一個口袋內裝有大小相同的紅球,白球和黑球,從中摸出一個球,摸出紅球或白球的概率為0.58,摸出紅球或黑球的概率為0.62,那么摸出紅球的概率為0.2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G為BC的中點.
(Ⅰ)求證:FG∥平面BED;
(Ⅱ)求證:平面BED⊥平面AED;
(Ⅲ)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=0.3${\;}^{2-x-{x}^{2}}$的定義域為R;單調遞增區(qū)間[-$\frac{1}{2}$,+∞);值域[$0.{3}^{\frac{9}{4}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果正數(shù)a,b滿足a+b=5,則$\frac{1}{a+1}+\frac{1}{b+2}$的最小值為(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案