6.如果正數(shù)a,b滿足a+b=5,則$\frac{1}{a+1}+\frac{1}{b+2}$的最小值為(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 利用基本不等式即可求出答案

解答 解:$\frac{1}{a+1}+\frac{1}{b+2}$=$\frac{1}{8}$[(a+1)+(b+2)]($\frac{1}{a+1}+\frac{1}{b+2}$)=$\frac{1}{8}$(1+1+$\frac{b+2}{a+1}$+$\frac{a+1}{b+2}$)≥$\frac{1}{8}$(2+2)=$\frac{1}{2}$,當(dāng)且僅當(dāng)a=3,b=2時(shí)取等號(hào),
故選:C

點(diǎn)評(píng) 本題考查基本不等式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意均值不等式的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在平行四邊形ABCD中,已知AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是( 。
A.8B.12C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$cos({θ+π})=-\frac{1}{4}$,則$sin({2θ+\frac{π}{2}})$=$-\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線y=kx+1與圓x2+y2+kx-y-9=0的兩個(gè)交點(diǎn)恰好關(guān)于y軸對(duì)稱,則k等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若關(guān)于x的不等式x2+2x-k>0的解集為R,則實(shí)數(shù)k的取值范圍是( 。
A.{k|k≤-1或k≥1}B.{k|-1<k<1}C.{k|k<-1}D.{k|k≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“k=2且b=-1”是“直線y=kx+b過點(diǎn)(1,1)”的(  )
A.充分條件不必要B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A(-1,0),B是圓F:x2-2x+y2-11=0(F為圓心)上一動(dòng)點(diǎn),線段AB的垂直平分線交BF于P,則動(dòng)點(diǎn)P的軌跡方程為( 。
A.$\frac{x^2}{12}+\frac{y^2}{11}=1$B.$\frac{x^2}{36}-\frac{y^2}{35}=1$C.$\frac{x^2}{3}-\frac{y^2}{2}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.要排出某班一天中語文、數(shù)學(xué)、政治、英語、體育、藝術(shù)六堂課的課程表,要求數(shù)學(xué)排在上午(前4節(jié)),體育排在下午(后2節(jié)),不同排法總數(shù)是( 。
A.720B.120C.144D.192

查看答案和解析>>

同步練習(xí)冊(cè)答案