【題目】如圖,已知直三棱柱中,,,是的中點,是上一點,且.
(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.
科目:高中數(shù)學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產品搭載實驗,計劃搭載新產品A、B,要根據(jù)該產品的研制成本、產品重量、搭載實驗費用和預計產生收益來決定具體安排,通過調查,有關數(shù)據(jù)如表:
產品A(件) | 產品B(件) | ||
研制成本與塔載 | 20 | 30 | 計劃最大資 |
產品重量(千克/件) | 10 | 5 | 最大搭載 |
預計收益(萬元/件) | 80 | 60 |
試問:如何安排這兩種產品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,并使得它與直角坐標系有相同的長度單位,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設曲線與直線交于、兩點,且點的坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線為參數(shù)),以坐標原點為極點,軸為極軸建立極坐標系,曲線.
(1)求曲線的直角坐標方程和直線的普通方程;
(2)求與直線平行,且被曲線截得的弦長為的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,M是橢圓C的上頂點,,F(xiàn)2是橢圓C的焦點,的周長是6.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過動點P(1,t)作直線交橢圓C于A,B兩點,且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點,并求此定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過定點且與直線垂直的直線與軸、軸分別交于點,點滿足.
(1)若以原點為圓心的圓與有唯一公共點,求圓的軌跡方程;
(2)求能覆蓋的最小圓的面積;
(3)在(1)的條件下,點在直線上,圓上總存在兩個不同的點使得為坐標原點),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:x2=2py(p>0)的焦點為F,點M是直線y=x與拋物線E在第一象限內的交點,且|MF|=5.
(1)求拋物E的方程.
(2)直線l與拋物線E相交于兩點A,B,過點A,B分別作AA1⊥x軸于A1,BB1⊥x軸于B1,原點O到直線l的距離為1.求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:1(a>b>0)經過點(,1),F(0,1)是C的一個焦點,過F點的動直線l交橢圓于A,B兩點.
(1)求橢圓C的方程
(2)是否存在定點M(異于點F),對任意的動直線l都有kMA+kMB=0,若存在求出點M的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com