分析 (1)利用基本不等式,結(jié)合條件,即可得出結(jié)論;
(2)不等式x+2$\sqrt{2xy}$≤a(x+y)對一切正數(shù)x、y恒成立,可得a≥$\frac{x+2\sqrt{2xy}}{x+y}$.換元利用導數(shù)研究其單調(diào)性極值與最值即可得出.
解答 解:(1)x+y=(x+y)($\frac{a}{x}$+$\frac{y}$)=a+b+$\frac{ay}{x}$+$\frac{bx}{y}$≥a+b+2$\sqrt{ab}$,
由題意a+b+2$\sqrt{ab}$=18,a+b=10,解得a=2,b=8或a=8,b=2;
(2)∵不等式x+2$\sqrt{2xy}$≤a(x+y)對一切正數(shù)x、y恒成立,∴a≥$\frac{x+2\sqrt{2xy}}{x+y}$.
令f(x,y)=$\frac{x+2\sqrt{2xy}}{x+y}$=$\frac{1+2\sqrt{2}•\sqrt{\frac{y}{x}}}{1+\frac{y}{x}}$,x>0,y>0.
令$\sqrt{\frac{y}{x}}$=t>0,則g(t)=$\frac{1+2\sqrt{2}t}{1+{t}^{2}}$,g′(t)=$\frac{-2(\sqrt{2}t-1)(t+\sqrt{2})}{(1+{t}^{2})^{2}}$,
令g′(t)=0,解得t=$\frac{\sqrt{2}}{2}$,可知當t=$\frac{\sqrt{2}}{2}$時,g(t)取得極大值即最大值2.
∴a≥2.
故a的最小值為2.
點評 本題考查了基本不等式的運用,考查恒成立問題的等價轉(zhuǎn)化、利用導數(shù)研究函數(shù)的單調(diào)性極值與最值等基礎(chǔ)知識與基本技能方法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 11 | C. | 10 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ① | B. | ①③ | C. | ①② | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com