分析 (I)證明BP⊥平面ABCD,以B為原點建立坐標系,則$\overrightarrow{BP}$為平面ABCD的法向量,求出$\overrightarrow{EM}•\overrightarrow{BP}$=-1×0+0×2+$\frac{1}{2}×0$=0,從而有EM∥平面ABCD;
(II)假設存在點N符合條件,設$\overrightarrow{PN}$=λ$\overrightarrow{PD}$,求出$\overrightarrow{BN}$,平面PCD的法向量$\overrightarrow{n}$的坐標,令|cos<$\overrightarrow{BN}$,$\overrightarrow{n}$>|=$\frac{2}{\sqrt{5}•\sqrt{9{λ}^{2}-8λ+4}}$=$\frac{2}{5}$解出λ,根據λ的值得出結論.
解答 (Ⅰ)證明:∵平面ABCD⊥平面ABEP,平面ABCD∩平面ABEP=AB,BP⊥AB
∴BP⊥平面ABCD,又AB⊥BC,
∴直線BA,BP,BC兩兩垂直,
以B為原點,分別以BA,BP,BC為x軸,y軸,z軸建立如圖所示的空間直角坐標系.
則P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),∴M(1,1,$\frac{1}{2}$),
∴$\overrightarrow{EM}$=(-1,0,$\frac{1}{2}$),$\overrightarrow{BP}$=(0,2,0).
∵BP⊥平面ABCD,∴$\overrightarrow{BP}$為平面ABCD的一個法向量,
∵$\overrightarrow{EM}•\overrightarrow{BP}$=-1×0+0×2+$\frac{1}{2}×0$=0,
∴$\overrightarrow{EM}$⊥$\overrightarrow{BP}$.又EM?平面ABCD,
∴EM∥平面ABCD.
(Ⅱ)解:當點N與點D重合時,直線BN與平面PCD所成角的正弦值為$\frac{2}{5}$.
理由如下:
∵$\overrightarrow{PD}$=(2,-2,1),$\overrightarrow{CD}$=(2,0,0),
設平面PCD的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{2x=0}\\{2x-2y+z=0}\end{array}\right.$.
令y=1,得$\overrightarrow{n}$=(0,1,2).
假設線段PD上存在一點N,使得直線BN與平面PCD所成角α的正弦值等于$\frac{2}{5}$.
設$\overrightarrow{PN}$=λ$\overrightarrow{PD}$=(2λ,-2λ,λ)(0≤λ≤1),∴$\overrightarrow{BN}$=$\overrightarrow{BP}$+$\overrightarrow{PN}$=(2λ,2-2λ,λ).
∴|cos<$\overrightarrow{BN}$,$\overrightarrow{n}$>|=$\frac{2}{\sqrt{5}•\sqrt{9{λ}^{2}-8λ+4}}$=$\frac{2}{5}$.
∴9λ2-8λ-1=0,解得λ=1或$\frac{1}{9}$(舍去).
∴當N點與D點重合時,直線BN與平面PCD所成角的正弦值等于$\frac{2}{5}$.
點評 本題考查了線面平行的判斷,空間向量的應用與線面角的計算,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 充分必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | a=80 | b=40 | 120 |
對商品不滿意 | c=70 | d=10 | 80 |
合計 | 150 | 50 | n=200 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{17}{9}$ | B. | $\frac{19}{10}$ | C. | $\frac{9}{5}$ | D. | $\frac{11}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 29 | B. | 47 | C. | 76 | D. | 123 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com