【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)若與平行的直線與曲線交于,兩點.且在軸的截距為整數(shù),的面積為,求直線的方程.
【答案】(Ⅰ)..(Ⅱ)或.
【解析】
(Ⅰ)利用消參法將參數(shù)方程轉(zhuǎn)化為普通方程,由極坐標(biāo)與直角坐標(biāo)方程轉(zhuǎn)化公式,即可得直線的直角坐標(biāo)方程.
(Ⅱ)由與平行,可設(shè)直線:,利用點到直線距離公式求得到直線的距離,由圓的幾何性質(zhì)求得,結(jié)合三角形面積公式即可求得整數(shù)的值.
(Ⅰ)曲線C的參數(shù)方程,化為普通方程為.
由,
因為,,代入可得直線的直角坐標(biāo)方程為.
(Ⅱ)由(Ⅰ)知的直角坐標(biāo)方程為,.
設(shè)直線:,由題知.
所以到直線的距離,
所以,
的面積為,所以,
整理得,
所以或,
因為,所以或.
所以直線的方程為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則下列命題正確的是( )
A.當(dāng)時,
B.函數(shù)有3個零點
C.的解集為
D.,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點坐標(biāo)是,過點且垂直于長軸的直線交橢圓于兩點,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點的直線與橢圓交于不同的兩點,問三角形內(nèi)切圓面積是否存在最大值?若存在,請求出這個最大值及此時直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與的圖象在它們的交點處具有相同的切線.
(1)求的解析式;
(2)若函數(shù)有兩個極值點,,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個極值點,(其中),且的取值范圍為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)若與平行的直線與曲線交于,兩點.且在軸的截距為整數(shù),的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為雙曲線:的一個焦點,過作的一條漸近線的垂線,垂足為點,與的另一條漸近線交于點,若,則的離心率為( )
A.2B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com