【題目】已知(其中,是自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若不等式對(duì)于恒成立,求實(shí)數(shù)的取值范圍.

【答案】1)函數(shù)的減區(qū)間為,增區(qū)間為2

【解析】

1)對(duì)函數(shù)求導(dǎo),通過(guò)導(dǎo)函數(shù)的不等式確定原函數(shù)的增減區(qū)間,即可得函數(shù)的單調(diào)區(qū)間.

2)將所要證明的式子變形,建立一個(gè)函數(shù),求導(dǎo)后再建立一個(gè)新的函數(shù),再求導(dǎo).需要用到兩次求導(dǎo),通過(guò)最值確定正負(fù)號(hào),再來(lái)確定原函數(shù)的單調(diào)性,通過(guò)單調(diào)性即可得到實(shí)數(shù)的取值范圍.

1)當(dāng)時(shí),,所以

得,得,,

所以函數(shù)的減區(qū)間為,增區(qū)間為.

2)由題意對(duì)于恒成立,

等價(jià)于對(duì)于恒成立,

設(shè),則由得,

當(dāng)0<x<時(shí),g′(x)<0,g(x)單調(diào)遞減,

當(dāng)<x時(shí),g′(x)>0,g(x)單調(diào)遞增,

所以,

,則由,

0<x<1時(shí),t′(x)>0,t(x)單調(diào)遞增,1<x時(shí),t′(x)<0,t(x)單調(diào)遞減,

所以時(shí)取得極大值.

所以,當(dāng)的最小值;

當(dāng)的最小值,得;

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,斜率為k的動(dòng)直線(xiàn)l過(guò)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為.

1)若直線(xiàn)l與曲線(xiàn)C有兩個(gè)交點(diǎn),求這兩個(gè)交點(diǎn)的中點(diǎn)P的軌跡關(guān)于參數(shù)k的參數(shù)方程;

2)在條件(1)下,求曲線(xiàn)的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=(xacosxsinx,gxx3ax2,aR

1)當(dāng)a1時(shí),求函數(shù)yfx)在區(qū)間(0,)上零點(diǎn)的個(gè)數(shù);

2)令Fx)=fx+gx),試討論函數(shù)yFx)極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)

(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓x軸負(fù)半軸交于,離心率.

1)求橢圓C的方程;

2)設(shè)直線(xiàn)與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線(xiàn)x=4兩點(diǎn),若,直線(xiàn)MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類(lèi)制度,這是生活垃圾分類(lèi)首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類(lèi)意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶(hù)居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.

分類(lèi)意識(shí)強(qiáng)

分類(lèi)意識(shí)弱

合計(jì)

試點(diǎn)后

試點(diǎn)前

合計(jì)

已知在抽取的戶(hù)居民中隨機(jī)抽取戶(hù),抽到分類(lèi)意識(shí)強(qiáng)的概率為

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類(lèi)意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說(shuō)明你的理由;

2)已知在試點(diǎn)前分類(lèi)意識(shí)強(qiáng)的戶(hù)居民中,有戶(hù)自覺(jué)垃圾分類(lèi)在年以上,現(xiàn)在從試點(diǎn)前分類(lèi)意識(shí)強(qiáng)的戶(hù)居民中,隨機(jī)選出戶(hù)進(jìn)行自覺(jué)垃圾分類(lèi)年限的調(diào)查,記選出自覺(jué)垃圾分類(lèi)年限在年以上的戶(hù)數(shù)為,求分布列及數(shù)學(xué)期望.

參考公式:,其中

下面的臨界值表僅供參考

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】詹姆斯·哈登(James Harden)是美國(guó)NBA當(dāng)紅球星,自2012年10月加盟休斯頓火箭隊(duì)以來(lái),逐漸成長(zhǎng)為球隊(duì)的領(lǐng)袖.2017-18賽季哈登當(dāng)選常規(guī)賽MVP(最有價(jià)值球員).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代碼t

1

2

3

4

5

6

常規(guī)賽場(chǎng)均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根據(jù)表中數(shù)據(jù),求y關(guān)于t的線(xiàn)性回歸方程,*);

(Ⅱ)根據(jù)線(xiàn)性回歸方程預(yù)測(cè)哈登在2019-20賽季常規(guī)賽場(chǎng)均得分.

(附)對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:,

(參考數(shù)據(jù),計(jì)算結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為(),將曲線(xiàn)向左平移2個(gè)單位長(zhǎng)度得到曲線(xiàn).

1)求曲線(xiàn)的普通方程和極坐標(biāo)方程;

2)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有兩個(gè)調(diào)查抽樣:(1)某班為了了解班級(jí)學(xué)生在家表現(xiàn)情況決定從10名家長(zhǎng)中抽取3名參加座談會(huì);(2)某研究部門(mén)在高考后從2000名學(xué)生(其中文科400名,理科1600名)中抽取200名考生作為樣本調(diào)查數(shù)學(xué)學(xué)科得分情況.

給出三種抽樣方法:Ⅰ.簡(jiǎn)單隨機(jī)抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.

則問(wèn)題(1)、(2)選擇的抽樣方法合理的是(

A.1)選,(2)選B.1)選,(2)選

C.1)選,(2)選D.1)選,(2)選

查看答案和解析>>

同步練習(xí)冊(cè)答案