9.集合$A=\left\{{x\left|{\frac{x+2}{x-2}≤0}\right.}\right\}$,B={x|x-1≥0},則A∩B為( 。
A.[1,2]B.[1,2)C.[-2,∞)D.(-2,2]

分析 分別求解分式不等式與一次不等式化簡化簡集合A,B,再由交集運算得答案.

解答 解:由$\frac{x+2}{x-2}≤$0,得$\left\{\begin{array}{l}{(x+2)(x-2)≤0}\\{x-2≠0}\end{array}\right.$,即-2≤x<2.
∴集合$A=\left\{{x\left|{\frac{x+2}{x-2}≤0}\right.}\right\}$={x|-2≤x<2},
又B={x|x-1≥0}={x|x≥1},
∴A∩B={x|1≤x<2}=[1,2).
故選:B.

點評 本題考查交集及其運算,考查分式不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=|x-1|+|x-a|(a∈R).
(Ⅰ)若a≥2,求f(a2)的最小值;
(Ⅱ)若f(x)最小值是2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示程序框圖,如果輸入的k=2017,那么輸出的ai=( 。
A.3B.6C.-3D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個口袋內(nèi)裝有大小相同的6個球,其中3個白球,3個黑球,從中一次摸出兩個球,則摸出的兩個球至少一個是白球的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點A(-1,-2)在拋物線C:y2=2px的準(zhǔn)線上,記C的焦點為F,過點F且與x軸垂直的直線與拋物線交于M,N兩點,則線段MN的長為(  )
A.4B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)(1+i)(x+yi)=2,其中i為虛數(shù)單位,x,y是實數(shù),則|2x+yi|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={-1,0,1,2,3},N={x|x2-2x≤0},則M∩N=( 。
A.{1,2}B.{2,3}C.{-1,0,3}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=x+\frac{1}{e^x}$,若對任意x∈R,f(x)>ax恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,1-e)B.(1-e,1]C.[1,e-1)D.(e-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在${({3\sqrt{x}+\frac{1}{x}})^n}$的展開式中,各項系數(shù)的和為p,其二項式系數(shù)之和為q,若64是p與q的等比中項,則n=4.

查看答案和解析>>

同步練習(xí)冊答案