分析 (I)由題意可得直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=6+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).圓C的極坐標方程是ρ=2cosθ即ρ2=2ρcosθ,利用ρ2=x2+y2,x=ρcosθ即可化為直角坐標方程.
(II)經(jīng)過圓心(1,0)且與直線l垂直的直線方程為:y=-(x-1),即直線AB的方程.與圓的方程聯(lián)立化為:2x2-4x+1=0.利用根與系數(shù)的關(guān)系即可得出.
解答 解:(I)由題意可得直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=6+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).圓C的極坐標方程是ρ=2cosθ即ρ2=2ρcosθ,化為直角坐標方程:x2+y2=2x,配方為(x-1)2+y2=1.
(II)經(jīng)過圓心(1,0)且與直線l垂直的直線方程為:y=-(x-1),即直線AB的方程.
聯(lián)立$\left\{\begin{array}{l}{y=-x+1}\\{{x}^{2}+{y}^{2}=2x}\end{array}\right.$,化為:2x2-4x+1=0.
∴x1x2=$\frac{1}{2}$.
∴點A,B的橫坐標之積為x1x2=$\frac{1}{2}$.
點評 本題考查了極坐標與直角坐標方程的互化、參數(shù)方程化為普通方程、相互垂直的直線斜率之間的關(guān)系、直線與圓相交、一元二次方程的根與系數(shù)的關(guān)系、點到直線的距離公式公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com