20.如圖所示的三角形數(shù)陣叫“牛頓調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為$\frac{1}{n}$
(n≥2),每個數(shù)是它下一行左右相鄰兩數(shù)的和,如$\frac{1}{1}$=$\frac{1}{2}$$+\frac{1}{2}$,$\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$,$\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,…
                                         $\frac{1}{1}$
                                  $\frac{1}{2}$             $\frac{1}{2}$
                        $\frac{1}{3}$              $\frac{1}{6}$             $\frac{1}{3}$
               $\frac{1}{4}$              $\frac{1}{12}$             $\frac{1}{12}$          $\frac{1}{4}$
      $\frac{1}{5}$             $\frac{1}{20}$              $\frac{1}{30}$             $\frac{1}{20}$         $\frac{1}{5}$
     …
則第6行第3個數(shù)(從左往右數(shù))為$\frac{1}{60}$.

分析 根據(jù)每個數(shù)是它下一行左右相鄰兩數(shù)的和,先求出第6行的第2個數(shù),再求出6行的第3個數(shù).

解答 解:設(shè)第n行第m個數(shù)為a(n,m),
由題意知a(6,1)=$\frac{1}{6}$,
a(6,2)=a(5,1)-a(6,1)=$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{30}$,
a(6,3)=a(5,2)-a(6,2)=$\frac{1}{20}$-$\frac{1}{30}$=$\frac{1}{60}$,
故答案為:$\frac{1}{60}$

點(diǎn)評 本題考查通過觀察歸納出各數(shù)的關(guān)系,考差了學(xué)生的觀察能力和計(jì)算能力,屬于中檔題,解題時要認(rèn)真審題,仔細(xì)解答,避免錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗實(shí)線和粗虛線畫出的是某三棱錐的三視圖,則該三棱錐的體積為( 。
A.$\frac{32}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,有一直徑為8的半圓形,半圓周上有一點(diǎn)C滿足$∠ABC=\frac{π}{6}$,動點(diǎn)E,F(xiàn)在直徑AB上,滿足$∠ECF=\frac{π}{6}$,
(1)若$CE=\sqrt{13}$,求AE的長;
(2)設(shè)∠ACE=α,求三角形△ECF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin(2x+$\frac{π}{3}$)-cos2x+$\frac{1}{2}$.
(Ⅰ)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,f(A)=$\frac{1}{4}$,a=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1、F2,漸近線方程是:$y=±\frac{{2\sqrt{5}}}{5}x$,點(diǎn)A(0,b),且△AF1F2的面積為6.
(Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l:y=kx+m(k≠0,m≠0)與雙曲線C交于不同的兩點(diǎn)P,Q,若線段PQ的垂直平分線經(jīng)過點(diǎn)A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圓x2+y2-4x-2y-11=0上的點(diǎn)到直線x+y-13=0的最大距離與最小距離之差是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線$\left\{\begin{array}{l}{x=tanφ}\\{y=secφ}\end{array}\right.$(φ是參數(shù))的漸近線方程為x±y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對于任意實(shí)數(shù),直線y=x+b與橢圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=4sinθ}\end{array}\right.$(0≤θ<2π)恒有公共點(diǎn),則b的取值范圍是[-2$\sqrt{5}$,2$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={-1,0,1,2,3},集合B={x|x=ab,a,b∈A,且a≠b),則A∩B=( 。
A.{-1,0,2,3}B.{0,1,2}C.{0,2,4}D.{0,2,3,6}

查看答案和解析>>

同步練習(xí)冊答案