分析 由sec2φ=1+tan2φ,求出雙曲線的直角坐標(biāo)方程為y2-x2=1,由此能求出該雙曲線的漸近線方程.
解答 解:∵雙曲線$\left\{\begin{array}{l}{x=tanφ}\\{y=secφ}\end{array}\right.$(φ是參數(shù)),
sec2φ=1+tan2φ,
∴雙曲線的直角坐標(biāo)方程為y2-x2=1,
∴雙曲線$\left\{\begin{array}{l}{x=tanφ}\\{y=secφ}\end{array}\right.$(φ是參數(shù))的漸近線方程為x±y=0.
故答案為:x±y=0.
點評 本題考查雙曲線的漸近線方程的求法,考查直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
支持 | 反對 | 總計 | |
男生 | 30 | ||
女生 | 25 | ||
總計 |
P(K2≥k0) | 0.10 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.7069% | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2>b2 | B. | $\sqrt{a}$>$\sqrt$ | C. | 2a>2b | D. | lga>lgb |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\sqrt{2}$,$\sqrt{2}$] | B. | [-1,$\sqrt{2}$] | C. | [-1,1] | D. | (-1,$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 20 | C. | 40 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com