8.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin(2x+$\frac{π}{3}$)-cos2x+$\frac{1}{2}$.
(Ⅰ)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,f(A)=$\frac{1}{4}$,a=3,求△ABC面積的最大值.

分析 (Ⅰ)函數(shù)f(x)解析式利用兩角和與差的正弦函數(shù)公式,二倍角的余弦函數(shù)公式化簡(jiǎn),整理為一個(gè)角的正弦函數(shù),利用正弦函數(shù)的單調(diào)性確定出f(x)在[0,π]上的單調(diào)遞增區(qū)間即可;
(Ⅱ)由f(A)的值,確定出A的度數(shù),利用余弦定理求出bc的最大值,進(jìn)而求出三角形ABC面積的最大值即可.

解答 解:(Ⅰ)f(x)=$\frac{\sqrt{3}}{2}$($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)-$\frac{1}{2}$cos2x=$\frac{1}{2}$($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
∵x∈[0,π],
∴函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間為[0,$\frac{π}{6}$],[$\frac{2π}{3}$,π];
(Ⅱ)由f(A)=$\frac{1}{2}$sin(2A+$\frac{π}{6}$)=$\frac{1}{4}$得:sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<A<π,
∴$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{13π}{6}$,
∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,
∴A=$\frac{π}{3}$,
由余弦定理知a2=9=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
∴bc≤9(當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立),
∴S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×9×$\frac{\sqrt{3}}{2}$=$\frac{9\sqrt{3}}{4}$,
∴△ABC面積的最大值為$\frac{{9\sqrt{3}}}{4}$.

點(diǎn)評(píng) 此題考查了余弦定理,三角形面積公式,兩角和與差的正弦函數(shù)公式,以及正弦函數(shù)的單調(diào)性,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某同學(xué)在利用“五點(diǎn)法”作函數(shù)f(x)=Asin(ωx+Φ)+t的圖象時(shí),列出了如下表格中的部分?jǐn)?shù)據(jù)
x$\frac{5π}{12}$$\frac{3π}{4}$
ωx+Φ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)6-2
(1)請(qǐng)將表格補(bǔ)充完整,并寫出f(x)的解析式;
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知x2+4xy-3=0,其中x>0,y∈R,則x+y的最小值是( 。
A.$\frac{3}{2}$B.3C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在某化學(xué)反應(yīng)的中間階段,壓力保持不變,溫度從1°變化到5°,反應(yīng)結(jié)果如下表所示(x代表溫度,y代表結(jié)果):
x12345
y3571011
(1)請(qǐng)?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖(點(diǎn)要描粗)
(2)求化學(xué)反應(yīng)的結(jié)果y對(duì)溫度x的線性回歸方程$\hat y=\widehatbx+\hat a$;
(3)判斷變量x與y是正相關(guān)還是負(fù)相關(guān),并預(yù)測(cè)當(dāng)溫度達(dá)到10°時(shí)反應(yīng)結(jié)果為多少?
附:線性回歸方程$\hat y=\widehatbx+\hat a$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,曲線C1的方程為x2+y2=1,在以原點(diǎn)為極點(diǎn),x軸的非負(fù)關(guān)軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$ρ=\frac{8}{cosθ+2sinθ}$.
(1)將C1上的所有點(diǎn)的橫坐標(biāo)和縱坐標(biāo)分別伸長(zhǎng)到原來的2倍和$\sqrt{3}$倍后得到曲線C2,求曲線C2的參數(shù)方程;
(2)若P,Q分別為曲線C2與直線l的兩個(gè)動(dòng)點(diǎn),求|PQ|的最小值以及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系XOY中,F(xiàn)1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),B(0,b),連接BF2并延長(zhǎng),交橢圓于A,C與A關(guān)于X軸對(duì)稱
(1)若C($\frac{4}{3}$,$\frac{1}{3}$),BF2=$\sqrt{2}$,求橢圓方程
(2)若F1C⊥AB,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示的三角形數(shù)陣叫“牛頓調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù)且兩端的數(shù)均為$\frac{1}{n}$
(n≥2),每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如$\frac{1}{1}$=$\frac{1}{2}$$+\frac{1}{2}$,$\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$,$\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,…
                                         $\frac{1}{1}$
                                  $\frac{1}{2}$             $\frac{1}{2}$
                        $\frac{1}{3}$              $\frac{1}{6}$             $\frac{1}{3}$
               $\frac{1}{4}$              $\frac{1}{12}$             $\frac{1}{12}$          $\frac{1}{4}$
      $\frac{1}{5}$             $\frac{1}{20}$              $\frac{1}{30}$             $\frac{1}{20}$         $\frac{1}{5}$
     …
則第6行第3個(gè)數(shù)(從左往右數(shù))為$\frac{1}{60}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若直線y=x+b與曲線y=$\sqrt{1-{x^2}}$有公共點(diǎn),則b的取值范圍是( 。
A.[-$\sqrt{2}$,$\sqrt{2}$]B.[-1,$\sqrt{2}$]C.[-1,1]D.(-1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=3xex+2(e為自然對(duì)數(shù)的底)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案