分析 (1)由正弦定理化簡已知等式可得:sinBsinA=$\sqrt{3}$sinAcosB,結(jié)合sinA≠0,可求tanB=$\sqrt{3}$,即可得B的值.
(2)由已知可得:bsinA=$\frac{\sqrt{3}}{2}$a,利用三角形面積公式可求ac=4,可求c,進(jìn)而利用余弦定理可求b的值.
解答 解:(1)∵bsinA=$\sqrt{3}$acosB,
∴由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,
∵A為三角形內(nèi)角,sinA≠0,
∴得tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$.
(2)∵B=$\frac{π}{3}$,可得:bsinA=$\sqrt{3}$acosB=$\frac{\sqrt{3}}{2}$a,
∵a=2,△ABC的面積為$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$c×$\frac{\sqrt{3}}{2}$a,可得ac=4,
∴c=2,
∴由余弦定理可得:b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{{2}^{2}+{2}^{2}-2×2×2×\frac{1}{2}}$=2.
點(diǎn)評 本題主要考查了正弦定理,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B | B. | A∩B | C. | ∁UA∩∁UB | D. | ∁UA∪∁UB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com