分析 (1)通過函數(shù)經(jīng)過的定點,得到m,n的關(guān)系,利用基本不等式求解表達式的最值.
(2)先將關(guān)于s的表達式整理,再根據(jù)xy=1,由基本不等式的性質(zhì)求出即可.
解答 解:(1)函數(shù)$f(x)=log{{\;}_a^{(x+3)}}-1$(a>0且a≠1)的圖象恒過定點A(-2,-1),
點A在直線mx+ny+1=0上,則,2m+n=1,mn>0.
$\frac{1}{m}+\frac{1}{n}$=($\frac{1}{m}+\frac{1}{n}$)(2m+n)=3+$\frac{n}{m}$$+\frac{2m}{n}$$≥3+2\sqrt{2}$,當且僅當n=$\sqrt{2}$m,并且2m+n=1時取等號.
表達式的最小值為:3$+2\sqrt{2}$.
(2)解:$s=\frac{3}{{3-{x^2}}}+\frac{12}{{12-{y^2}}}$=$\frac{3(12-{y}^{2})+12(3-{x}^{2})}{(3-{x}^{2})(12-{y}^{2})}$=$\frac{72-12{x}^{2}-3{y}^{2}}{36-12{x}^{2}-3{y}^{2}+{x}^{2}{y}^{2}}$,
∵xy=-1,∴x2y2=1,
∴s=$\frac{72-12{x}^{2}-3{y}^{2}}{36-12{x}^{2}-3{y}^{2}+{x}^{2}{y}^{2}}$=1+$\frac{35}{37-12{x}^{2}-3{y}^{2}}$,
∵12x2+3y2≥2$\sqrt{36{x}^{2}{y}^{2}}$=12,
∴s≥1+$\frac{35}{37-12}$=$\frac{12}{5}$,
當且僅當“12x2=3y2”即x=-$\frac{\sqrt{2}}{2}$,y=$\sqrt{2}$或x=$\frac{\sqrt{2}}{2}$,y=-$\sqrt{2}$時“=”成立,
表達式的最小值為:$\frac{12}{5}$
點評 本題考查了函數(shù)的最值問題,考查基本不等式的性質(zhì),是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$或2 | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com