13.把一張邊長為6的正三角形的紙片ABC,以它的高AD為折痕,折成一個直二面角B-AD-C,則BC=$3\sqrt{2}$.

分析 由題意畫出圖形,可得△BDC是邊長為3的等腰直角三角形,則答案可求.

解答 解:如圖,

在圖1正三角形ABC中,由AB=BC=AC=6,AD⊥BC,可得BD=DC=3,
在圖2中,∵二面角B-AD-C,∴∠BDC=90°,
在Rt△BDC中,可得BC=$\sqrt{{3}^{2}+{3}^{2}}=3\sqrt{2}$.
故答案為:$3\sqrt{2}$.

點評 本題考查二面角的平面角及其求法,關(guān)鍵是掌握折疊問題中折疊前后得變量與不變量,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,G、H分別為BP、BE、PC的中點.
(1)求證:GH∥平面ADPE;
(2)M是線段PC上一點,且PM=$\frac{3\sqrt{2}}{2}$,證明:PB⊥平面EFM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)y=f(x)在x=x0處取得極小值,則必有( 。
A.f′(x0)=0B.f″(x0)>0
C.f′(x0)=0且f″(x0)>0D.f′(x0)=0或f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)g(x)=2x3+(2a+1)x+$\frac{1}{2}$,若曲線y=g(x)與x軸相切,則a的值為$-\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若有一個線性回歸方程為 $\stackrel{∧}{y}$=-2.5x+3,則變量x增加一個單位時( 。
A.y平均減少2.5個單位B.y平均減少0.5個單位
C.y平均增加2.5個單位D.y平均增加0.5個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線l1:ax+y-a+1=0,直線l1:4x+ay-2=0,則“a=±2”是“l(fā)1∥l2”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法中正確的是( 。
A.一個命題的逆命題為真,則它的逆否命題一定為真
B.若“ac2>bc2”,則a>b
C.?x0∈R,$sin{x_0}+cos{x_0}=\frac{3}{2}$
D.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且有2f(x)+xf'(x)>x2,則不等式(x+2017)2f(x+2017)-f(-1)<0的解集為(-2018,-2017).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是( 。
A.命題“若x2=9,則x=±3”的否命題為“若x2=9,則x≠±3”
B.若命題P:?x0∈R,$x_0^2-3{x_0}-1>0$,則命題?P:?x∈R,$x_{\;}^2-3x-1<0$
C.設(shè)$\overrightarrow a,\overrightarrow b$是兩個非零向量,則“$\overrightarrow a•\overrightarrow b<0$是“$\overrightarrow a,\overrightarrow b$夾角為鈍角”的必要不充分條件
D.若命題P:$\frac{1}{x-2}>0$,則¬P:$\frac{1}{x-2}≤0$

查看答案和解析>>

同步練習(xí)冊答案